PETROPHYSICS

By: Mohammad Hossein Saberi
Mh.saberi@aut.ac.ir



- Petrophysics

1.  Reservoir Characterization
2. Well Logging

3. Well Correlation

4.  Software- Geolog

- Mid Term Exam

- 1 Presentation



Reference Books

F. Jerry Ludia

(115
| -
| B 1)
o — “ — —— e L-l s —
I o
(1]

Carbonate Reservoir
Characterization

An Integrated Approach




T S e L
ZnciEditinm

Laurence G. Walker, Editor




. Alstgp-by-stegcourse inwelllog .~ [
-ﬁﬁ'ﬂﬂrtm-fﬂﬂ rurﬂmrentglts E
- -.il,',ﬂ ﬂﬂmru:ﬂdtﬂmepu L




| Well I_.ugging
| | and
- Geology

0. & L. SERRA




Well Logging
Data Acquisition and Applications

0&L.SERIRAY, o

el Sr—— e




Reservoir Characterization

ROCK FABRIC

Wireline Logs
* Geophysics
Porosity v ‘ Core Analysis
Pem\eal_mllty
Saturation Production

Pressure
Structure Tracer Tests




Petrophysical Evaluation:

*Reservoir Geological Analysis
*Routine Core Analysis (RCAL)
*Special Core Analysis (SCAL)

*Wire line log Interpretation
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Differences between carbonate and siliciclastics
reservoirs

» Vuggy porosity common in carbonates, rare in clastics

» Microporosity common in carbonates

W High proportion of non-effective porosity in carbonates

Permeability

» High contrasts in permeability common in carbonates

» Link between porosity and permeability is not
straightforward in carbonates and is difficult to predict



Petrophysical Rock Properties

- Porosity:

Pore volume B Bulk volume - Mineral volume

Porosity = =
’ Bulk volume Bulk volume

- Effective and Non-Effective

- Visual method and laboratory (Boyle’'s Law)
measurements



= Plug porosity
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Fig. 1.1. Plot of whole-core porosity values versus porosity values of plug samples
taken from the whole-core samples and recleaned. Whole-core porosity is too

small by 0 — 4 porosity percent



- Porosity measurements should be made at in situ stress
conditions because carbonate rocks are compressible, and
porosity decreases with increasing effective stress. The
common laboratory method is to increase confining pressure
while maintaining a constant pore pressure. The resulting
decrease in porosity is normally very small (2%) in Paleozoic
and many Mesozoic reservoirs, and porosity measurements at
ambient conditions are usually adequate (Harari et al. 1995).
Porosity values of all high-porosity carbonates, however,
should be checked for porosity loss with increasing confining

pressure.
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Fig. 1.2. Effect of confining pressure on porosity in Paleozoic and Jurassic carbonate
reservoirs. Porosity loss 1s defined as confined porosity/unconfined porosity




- In carbonate sediment the shape of the grains and the
presence of intragrain porosity as well as sorting have a

large effect on porosity.

Porosity = 47% Porosity = 26%

Fig. 1.3. Comparison of porosity in (A) cubic packed spheres and (B) rhombohedral-
packed spheres. The porosity is a function of packing, and pore size is controlled by
the size and packing of spheres



o Permeagl‘lty:

Darcy’s Law: Q= A(ﬁ}(g] , )
i N L

where Q is rate of flow, k is permeability, g is fluid viscosity, (4P)/L is the
potential drop across a horizontal sample, and A is the cross-sectional area of
the sample. Permeability is a rock property, viscosity is a fluid property, and
AP/L 1s a measure of flow potential.

- Normally, either air or brine is used as a fluid and, when high rates of flow can be
maintained, the results are comparable. At low rates, air permeability will be
higher than brine permeability. This is because gas does not adhere to the pore
walls as liquid does, and the slippage of gases along the pore walls gives rise to
an apparent dependence of permeability on pressure. This is called the

Klinkenberg effect, and it is especially important in low-permeability rocks.



- Permeability is a vector and scalar quantity. Horizontal permeability
varies in different directions, and vertical permeability is commonly less
than horizontal permeability.

- A measure of permeability can be obtained from production tests using
pressure buildup analyses. The pressure in the well is drawn down by
production, the well is shut in, and the rate of pressure increase is
measured. The rate of pressure increase is a function of the effective
permeability of the reservoir. The effective, average permeability of the
interval tested is calculated using the following equation:

Slope (psv/log cycle) = 162.6(quBy/kh),

- where ¢ is the flow rate in stock-tank-barrels/day, pu = viscosity in
centipoises, Bo is reservoir-barrels/stock-tank-barrels, kis permeability in
millidarcys, and /4 is the net reservoir interval in feet.
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Fig. 1.6. Typical Homer pressure buildup plot (after Dake 1978). The slope of the
line is a function of permeability-feet (kh)



- It Is common practice to estimate permeability using simple
porosity permeability transforms developed from core data.
However, porosity permeability cross plots for carbonate
reservoirs commonly show large variability , demonstrating that
factors other than porosity are important in modeling
permeability. These equations illustrate that the size and
distribution of pore space, or pore-size distribution, is important
along with porosity in estimating permeability. In general it can
be concluded that there is no relationship between porosity and
permeability in carbonate rocks unless pore-size distribution is

Included.
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Fig. 1.7. Plot of porosity and permeability for carbonate rocks, illustrating that there
is no relationship between porosity and permeability in carbonate rocks without in-
cluding pore-size distribution



o Wettagl‘lty:

Wetting Liquid

Fig. 1.10. Adhesive forces and the definition of wettability. If the adhesive forces are

less than cohesive forces, (0 > 90, the liquid is said to be nonwetting. If adhesive

forces are greater than cohesive forces, (0 < 90°), the liquid is said to be the wetting
phase



- Hydrocarbon saturation in a reservoir is related to pore size as
well as capillary pressure and capillary forces. For oil to
accumulate in a hydrocarbon trap and form a reservoir, the
surface tension between water and oil must be exceeded. This
means that the pressure in the oil phase must be higher than
the pressure in the water phase. If the pressure in the oil is only
slightly greater than that in the water phase, the radius of
curvature will be large and the oil will be able to enter only
large pores. As the pressure in the oil phase increases, the

radius of curvature decreases and oil can enter smaller pores
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Fig. 1.14. Diagram showing smaller pores being filled with a non-wetting fluid (oil)
displacing a wetting fluid (water) as capillary pressure increases linearly with reser-
voir height. Pore size is determined by grain size and sorting. (A) Only the largest
pores contain oil at the base of the reservoir. (B) Smaller pores are filled with oil as
capillary pressure and reservoir height increase. (C) Smallest pores are filled with oil
toward the top of the reservoir



- The pressure in the water phase depends upon the
degree to which the fluid column is connected to the
Earth’s surface. In an open system, the fluid pressure is
equal to depth times the density of the fluid and is called
hydrostatic. The hydrostatic pressure gradient is about
0.434 psi/ft; overburden pressure equals the weight of the
overburden sediment and has a gradient of about 1 psi/ft.
Deviations from  hydrostatic pressure, abnormal
pressures, occur when the formation fluid is confined and

cannot equilibrate with surface pressure.



- Over pressuring is the most common abnormal pressure
and is produced by (1) compaction during rapid burial, (2)
tectonic compression, and (3) hydrocarbon generation
and migration (Osborne and Swarbrick 1997). In extreme
cases, fluid pressures can equal and even exceed
overburden pressures. Uncommonly, pressures can be
lower than hydrostatic. Under pressure is often related to
erosional unloading that results in an increase in pore
volume due to the elastic rebound of the sediment as the

overburden is reduced (Bachu and Underschultz 1995).
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Fig. 1.16. Diagram illustrating overburden, normal hydrostatic, and abnormal over-
and underpressure regimes. (After Dake 1978)



- Relative Permeability:

- Relative permeability is simply the permeability measured
at a specific fluid saturation expressed as a fraction of the
total or absolute permeability. Absolute permeability is the
permeability of a rock that is 100% saturated with a single

fluid.



A. Water-filled interparticle
pore space

B. Migration of oil (nonwetting
s\llmse) into pore space.

ater (wetting phase) coats
grains.

C. Water injection results in
residual oil trapped by
capillary forces in pores
with small pore throats.

Fig. 1.17. Diagram of oil and water distribution in a water-wet rock under three con-
ditions: (A) 100% water saturation, (B) injection of a nonwetting fluid (oil), and (C)

injection of a wetting fluid (water)



A. Unsteady-State Method

—p Ol
Water———» Oil Saturated
— Water

B. Steady-State Method

Qil } — Ol
Water —» Water

Fig. 1.19. Illustration of unsteady-state and steady-state methods of measuring two-
phase oil and water relative permeability



Rock Fabric Well A
A Rock Fabric Well B

Well A Well B

Qil Production
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Fig. 1.20. Simplified illustration showing the relationship between relative perme-
ability to oil and water, capillary pressure converted to reservoir height, water satura-
tion, and pore size. The effect of pore size is illustrated by considering two capillary
pressure curves (rock-fabric A, rock-fabric B) from carbonate rocks with different
pore-size distributions. The change in pore size results in the possibility of intervals
where (1) clean oil is produced from rock-fabric A and oil and water from rock-fabric
B ., and (2) oil and water is produced from rock-fabric A and water from B



Rock-Fabric Classification



Carbonate rock textures: Dunham classification

Depositional texture recognizable Depositional
texture not
Original components not bound together Original recognizable
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Pore Throat Size Classes

Wackestone Grainstone

” Macropores 1: Pore Throat size =
10 microns

‘ Macropores 2: Fore Throat size
between 4 and 10 microns

bckstone Mesopore 1: Pore Throat size
between 1 and 4 microns

Percent of pore

Mesopore 2: Pore Throat size
between 0.2 and 1 micron

Mudstons /

Micropore: Fore Throat size <0.3
A\ / \ \ / micron
ﬁ@%ﬁ%l 1]

0.01 0.1 1 10
PTR (micron)

After Marzouk et al. (1995)




Core Based Pore Observation Tools

Meso Macro Mega
porosity  porosity porosity

. Gas adsorption/desorption

Melting temperature from NMR
SANS Small angle neutron scattering

m Scanning electron microscope

Mercury injection cap pressure

Wetting fluid withdrawal Liquid Porosimetry

Computer tomography -

Digital image analysis of petrographic imagery -

1 pm = 0.001 mm= 1000 nm -
0.001 0.01 0.1 100 1000 10000 (pum)




Porositv classification Svstem

Classic pore type classification systems mostly observational

Archie (1952) - textural/petrophysical with 12 pore types

Choquette and Pray (1970) - definitions of pore types
genetic/depositional with 15 pore types

Lucia (1983, 1995, 1999) - rock fabric/petrophysical with 18
pore types

Longy (2006) — modified Choquette Pray pore size with 20
pore types

Marzouk, Tazenaki, Suzuki (1998), Clerke et al. (2008) -
MICP based
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Pore type Classifications

Pore types

Mouldic
intrafossil
shelter

Intergrain
intercrystal

Archie (1952)

| Matrix i

Lucia (1983)

Interparticle

Choquette and Pray (1970)

Non fabric selective




Carbonate Diagenesis

“The diagenesis of carbonate sediments encompasses all the
processes which affect the sediments after deposition until the

realms of incipient metamorphism at elevated temperatures and
pressures.”

Diagenetic processes include:

Cementation
Micritisation
Neomorphism
Dissolution

Compaction / fracturing
Dolomitisation



Abbreviations
: Choquette and
sorm Lucia Pray (1970)
Interparticle IP BP
Intergrain IG -
Intercrystal IX BC
Vug \S/\L;G VUG
Sepafgiaay Vo o
Intraparticle WP WP
Intragrain WG .
Intracrystal WX -
Intrafossil WF .
Intragrain microporosity igud -
Shelter gH SH
Touching Vug TV .
Fracture FR FR
Solution-enlarged fracture SF CH*
Cavernous cV cV
Breccia BR BR
Fenestral FE FE

*Channel.




Classification of Interparticle Pore Space

- In the absence of vuggy porosity, pore-size distribution in carbonate
rocks can be described in terms of particle size, sorting, and

interparticle porosity.

- Lucia (1983) showed that particle size can be related to mercury
capillary displacement pressure in nonvuggy carbonates with more
than 0.1 md permeability, suggesting that particle size describes the
size of the largest Pores. Whereas the displacement pressure
characterizes the largest pores sizes, the shape of the capillary
pressure curve characterizes the smaller pore sizes and is dependent

on interparticle porosity (Lucia 1983).



- The petrophysical properties of interparticle porosity are related to
particle size, sorting and interparticle porosity. Grain size and
sorting of grains and micrite Is based on Dunham’s classification,
modified to make it compatible with petrophysical considerations.
Instead of dividing fabrics into grain support and mud support, fabrics
are divided into grain-dominated and mud-dominated. The important
attributes of grain-dominated fabrics are the presence of open or
occluded intergrain porosity and a grain-supported texture. The
Important attribute of mud-dominated fabrics is that the volume
between the grains is filled with mud even if the grains appear to form

a supporting framework.



GRAINSTONE
Grain size conftrols

INTERPARTICLE PORE SPACE

Particle size and sorting
(Matrix interconnection)

GRAIN-DOMINATED FABRIC MUD-DOMINATED FABRIC
PACKSTONE PACKSTONE WACKESTONE MUDSTONE
Grain/mud size
controls pore size Mud size controls connecting pore size

-
==

Intergrain pore
space or cement

Intergrain pore
space or cement

Crystal size controls pore size

PERCENT INTERPARTICLE POROSITY

Note: baris 100 microns

space or cement

Intergrain pore
space or cement

Note: bar is 100 microns







Fig. 2.8. Examples of nonvuggy limestone rock fabrics. (a) Grainstone. (b) Grain-
stone with some separate-vug pore space. (¢) Grain-dominated packstone. d)
Large grain grain-domiated packstone. (e) Mud-dominated packstone. (f) Mud-
dominated packstone with some separate-vug pore space. (g) Wackestone with
microporosity. (h) Scanning electron microscope photo of microporosity in a
wackestone
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- Permeability and saturation characteristics of interparticle

porosity can be grouped into three  rock-
fabric/petrophysical classes. Class 1 is composed of
grainstones, dolograinstones, and large crystalline
dolostones. Class 2 is composed of grain-dominated
packstones, fine to medium crystalline graindominated
dolopackstones, and medium crystalline mud-dominated
dolostones. Class 3 is composed of mud-dominated

limestone and fine crystalline mud-dominated dolostones.



PETROPHYSICAL CLASSES

GRAIN-DOMINATED FABRIC MUD-DOMINATED FABRIC
GRAINSTONE ~ PACKSTONE PACKSTONE WACKESTONE MUDSTONE

Note: bar is 100 microns




Class 1 - Graimnstones, dolograinstones, and large crystalline dolostones.

k=(45.35x10% )5
Sw, =0.02219x H 0316 x g7!7%3

Class 2 - Grain-dominated packstones, fine and medium crystalline
grain-dominated dolopackstones, and medium crystal mud-dominated
dolostones.

3
k=(2.040 10 Jp5*®
Sw, = 0.1404 x 0407  go1:440

Class 3 - Mud-dominated limestones and fine crystalline mud-dominated
dolostones.

k = (2.884 x10° g 2"

ip

Sw, =0.6110x H 0505 5 gm1210



Vuggy Porosity

VUGGY PORE SPACE
SEPARATE-VUG PORES TOUCHING-VUG PORES
(VUG-TO-MATRIX-TO-VUG CONNECTION) (VUG-TO-VUG CONNECTION)
GRAIN-DOMINATED FABRIC GRAIN- AND MUD-DOMINATED FABRICS

EXAMPLE TYPES

EXAMPLE TYPES

PERCENT SEPARATE-VUG POROSITY

-~

= 2

DoV ® | miconactures
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‘ig. 2.20. Examples of separate-vug pore types. (a) Oomolds in oomoldic grain-
stone. (b) Oomolds and intergrain pore space in a grainstone. (¢) Intrafossil pore
space in a fusulinid grain-dominated packstone. (d) Intrafossil pore space in a for-
am with a large opening to interparticle pore space. (e) Skeletal grain molds in
moldic skeletal grainstone. (f) Grain molds in a wackestone. (g) Ooid grainstone
with mtragrain microporosity. (h) Scanning electron photomicrograph of intra-
grain microporosity showing micropores in a S-micron rhombic calcite matrix
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Fig. 2.21. Cross plot illustrating the effect of separate-vug porosity on air perme:
ability. (a) Grainstones with separate-vug porosity in the form of grain molds plox
to the right of the grainstone field in proportion to the volume of separate-vug po
rosity. (b) Grainstones with intrafossil and intragrain microporosity plot in the
class 2 field when plotted against total porosity. (¢) Dolograinstones with intral

grain microporosity plot in the class 2 field. (d) Grainstones with intragrain mi;
croporosity plot in the class 3 field



- The addition of separate-vug porosity to interparticle porosity increases
total porosity but does not significantly increase permeability. Therefore, it
IS important to determine interparticle porosity by subtracting separate-
vug porosity from total porosity and using interparticle porosity to
estimate permeability. The effect of separate vugs on permeability and
Initial water saturation depends upon the size of the pores connecting the
intra- and intergrain pore space. Large separate vugs are normally filled
with hydrocarbons above the transition zone. Intragrain microporosity will
contain significant amounts of capillary-bound water within the transition
zone, resulting in water-free production of hydrocarbons from intervals
with high initial water saturations. The transition zone for grainstones with
large volumes of separate vugs will be greater than that expected for a

nonvuggy grainstone.
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- Touching-vug pore systems cannot be related to porosity
but are related to the geometry of fracture pore space,
large vugs, and collapse breccia. These pore systems are
normally larger than the well bore and cannot be
adequately studied using cores. Small touching-vug
systems formed by microfractures and grain dissolution
connecting grain molds can be characterized by core
measurements. These systems enhance permeability 5x

to 10x over that expected from matrix permeabillity.
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Based on empirical data, mostly from Europe and the Middle
East, a new pore-type classification system has been developed. The
new system not only uses elements from existing pore-type clas-
sification systems, but also introduces many new elements. The
new pore-type system includes 20 pore-type classes that show a
predictable relation between porosity and permeability. It com-
bines sedimentologic and diagenetic features with flow-related
properties, and reservoir-critical parameters can thus be predicted
using sedimentologic and diagenetic models.




Table 1. Porosity-Permeability Coefficients of Determination
(R?) for the Lucia (1983, 1995, 1999) and Choquette and Pray
(1970) Classification Systems*

Pore Type R?
Lucia (1983, 1995, 1999) Classification System

Interparticle, class 3 0.68
Interparticle, class 2 0.62
Interparticle, class 1 0.79
Vuggy, separate 0.86
Vuggy, touching 0.45

Choquette and Pray (1970) Classification System

Interparticle 0.70
Intercrystalline 0.50
Moldic 0.88
Intraparticle 0.86
Vuggy 0.50

*Using samples from the present study.



Table 2. New Porosity Classification System*

Pore Type Pore Size Pore Distribution Pore Fabric R?
Interparticle Micropores (10-50 um) Uniform Interpartide, uniform micropores 0.88
Patchy Interpartide, patchy micropores 0.79
Mesopores (50-100 pm) Uniform Interpartide, uniform mesopores 0.86
Patchy Interpartide, patchy mesopores 0.85
Macropores (>100 um) Uniform Interpartide, uniform macropores 0.88
Patchy Interpartide, patchy macropores 0.87
Intercrystalline Micropores (10-20 um) Uniform Intercrystalline, uniform micropores 0.92
Patchy Intercrystalline, patchy micropores 0.79
Mesopores (20-60 pm) Uniform Intercrystalline, uniform mesopores 0.94
Patchy Intercrystalline, patchy mesopores 0.92
Macropores (>60 um) Uniform Intercrystalline, uniform macropores 0.80

Patchy Intercrystalline, patchy macropores
Intraparticle Intrapartide 0.86
Moldic Micropores (<10-20 um) Moldic micropores 0.86
Macropores (>20-30 um) Moldic macropores 0.90
Vuggy Vuggy 0.50
Mudstone microporosity Micropores (<10 pm) Tertiary chalk 0.80
Cretaceous chalk 0.81
Uniform Chalky micropores, uniform 0.96

Patchy Chalky micropores, patchy

*Partly based on Choquette and Pray (1970) and Lucia (1983, 1995, 1999). Porosity-permeability coefficients of determination (R?) are based on samples from the

present study.



- the new classification scheme was to incorporate the observation of
Lucia (1983) that pore size is a primary factor in understanding porosity-
permeability relationships. Whereas Lucia recognized the control of pore
Size on porosity permeability relationships, his classification scheme uses
grain size (of particles or crystals) instead of pore size as the primary
means of pore class division (i.e., his interparticleclassesl, 2, and3). In
this study, direct description of pore size was used (instead of particle or
crystal size). This is in part because of the range of sorting observed in
many samples that made classification of particle size problematic and
partly because later cements commonly act to occlude pore space,
making the relation of pore size to grain size indirect. The result of

Incorporating pore size into the systemwas a further increase in the R2.



- Important modifications include the addition of uniform
and patchy porosity distribution and the incorporation of

mudstone microporosity made to achieve high R2 values.

- In this Article, Thin-section porosity was impregnated with
bluedyed epoxy for visualization of pore types. Helium
porosity and air permeability (Klinkenberg corrected) were

measured on horizontal and a few vertical plugs.



. The main differences between the new carbonate _

pore system and those of Choquette and Pray (1970)
and Lucia (1983, 1995, 1999) are as follows:

* Porosity distribution is a major new element in the
classification.

* Lucia’s subdivision of interparticle porosity has
been partly incorporated into the new classification
system, but is now based on pore size instead of
grain size and sorting.

¢ Lucia’s three interparticle pore-type classes and Cho-
quette and Pray’s interparticle and intercrystalline
porosity types have been subdivided into 12 new
classes (6 interparticle and 6 intercrystalline).

* Micromoldic and macromoldic pores are differentiated.

* A new pore-type category, consisting of four pore
types, is introduced: mudstone microporosity.

The new classification system combines sedimentologic
and diagenetic features with flow-related properties,
and reservoir-critical parameters can thus be predicted
using sedimentologic and diagenetic models.

The new classification system is based on three main
elements: pore type, pore size, and pore distribution.
Age is an important factor for some of the mudstone
micropore classes.




Pore Type

Six main pore types are identified: interparticle,
intercrystalline, vuggy, intraparticle, moldic, and mud-
stone microporosity (Table 2). The first five pore types
are almost identical to those defined by Choquette and
Pray (1970), whereas the last one is new.

Pore Size

Lucia (1983, 1995, 1999) realized that pore-size
distribution controls permeability and is related to
rock fabric. Therefore, he used average particle size and
sorting to differentiate between different interparticle
pore-type classes. The term ‘“‘particle’” was used as a
general term for grains (multicrystalline particles) and
crystals (single-crystal particles) (Lucia, 1983).




. Interparticle pore !iameters an! size !’stri!utions _

were measured on the reference samples shown in
Figure la—c. Micropores have a dominant pore diam-
eter in the 10-60-um range (70% of the pores). Meso-
pores have a dominant pore diameter of 40—100 um,
although approximately 30% of the pores are in the
100-300-um range. Macropores are generally larger
than 100 pm in diameter (approximately 75% of the
pores). Interparticle pore-size groups may thus be de-
fined by 10-50 (micropores), 50-100 (mesopores),
and greater than 100 um (macropores). Porosity with
dominant pore diameters less than 10 um is classified as
mudstone microporosity.

Intercrystalline micropores are commonly 10-
20 pm in diameter, whereas mesopore diameters mostly
are in the 20-60-um range. Intercrystalline macro-
pores have diameters larger than 60 um.

Moldic micropore diameters are typically less than
10-20 pm, although they occasionally can be larger.
Moldic macropores are larger than 20-30 pm.




gure 1. Thin-section micrograpr NOWINg samples with a predominance of interpat
porosity, some of which are solution enlarged. Minor intraparticle and moldic pores are
present, but interparticle pores predominate
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Microporosity (10-50 mm pore diameter) with uniform porosity
distribution, f = 17.6%, k = 0.84 md,;



9.47 md;

mesoporosity (50-100 mm pore diameter) with uniform porosity
distribution, f = 19.3%, k
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Macroporosity (>100 mm pore diameter) with uniform porosity
distribution, f = 15.3%, k = 132 md;



700 um

macroporosity (>100 mmpore diameter) with uniform porosity
distribution and porelining calcite cement, f = 9.7%, k = 0.465 md.



Pore Distribution

Porosity distribution is a new element in pore-type
classification and has a significant effect on porosity-
permeability relationships (also noted by Lucia et al.,
2004a, b). The distribution of interparticle pores, inter-
crystalline pores, and mudstone micropores has been
visually classified as either uniform or patchy.

At similar porosities, a patchy porosity distribution
is observed to yield significantly higher permeability
than uniform porosity distribution. The reason for this
is that the porosity is concentrated over a smaller vol-

ume and the pore system is better connected than for an
equivalent, uniformly distributed pore volume. Further-
more, a patchy porosity distribution is often related
to secondary dissolution with slight corrosion of pore
throats, and this process also tends to favor connected
pores.
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30 cm

1.4 mm

Figure 2. Example of patchy interparticle mesoporosity (50-100 um pore diameter) in Devonian rocks from Russia. Left: core slab
showing patchy pore distribution related to differential dissolution. Tight, caldte-cemented areas are gray; porous, oil-stained areas
are brown. Right: thin-section photomicrographs showing patchy interparticle mesopores related to differential dissolution of
cements. Lower photomicrograph is a close-up showing patchy porosity at a larger scale. Note the abundance of rhombohedral pore
outlines, which are indicative of dissolution. Calcite cements are white. Both photomicrographs were taken under plane-polarized
light.
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PORE-TYPE DEFINITIONS

Interparticle Porosity:

- Choquette and Pray (1970) defined interparticle porosity as porosity
occurring between grains (intergrain). Lucia (1983) extended the term
“Interparticle” to also include pore spaces between crystals
(intercrystal). This redefinition thus included both the interparticle and
Intercrystalline porosity types of Choquette and Pray (1970).
However, the results of this study show that the petrophysical

properties of intergrain and intercrystal pores are different.



- Interparticle pores are normally associated with medium- to high-

energy depositional settings in the studied data set, such as rimmed,
platform-margin shoals, distally steepened ramp-margin shoals, inner-
rampfringing shoals, middle-ramp barrier shoals, local platforminterior
shoals, gravity-driven flow deposits, beaches, wash-over fans, and
others. Micropores and mesopores occur within grain-supported
textures composed of extremely small bioclastic fragments, where
larger interparticle pores have been partially occluded by cement, or
within poorly sorted grainstones. Micropores also occurwithin
recrystallized mud of mud-lean packstones. Macropores are most

common in moderately to well sorted, high-energy grainstones.



Intercrystalline Porosity:

- Intercrystalline porosity is the porosity between crystals
that may be of either primary or secondary origin
(Choquette and Pray, 1970). All intercrystalline pores
Included in the studied data set are secondary in origin
and occur between crystals that have grown more or less

In place by calcite recrystallization or dolomitization.



microporosity (10-20 mm pore diameter) with uniform porosity
distribution, f = 18.1%, k = 0.476 md,;




Mesoporosity (20—60 mm pore diameter) with uniform porosity
distribution, f = 19.3%, k = 4.93 md,;




16.7 md;

macroporosity (>60 mm pore diameter) with uniform porosity
distribution, f = 11.0%, k



Mesoporosity (20—60 mm pore diameter) with patchy porosity
distribution related to gypsum cementation (white); f = 12.1%, k =
16.0 md.



Mudstone Microporosity:

- Mudstone micropores have extremely small pore sizes, commonly a
few micrometers in diameter. Individual pores cannot be seen with a

standard petrographic microscope.

- Chalk micropores are primary in origin and occur between grains of
planktonic calcareous algae (coccospheres) or their component
crystal plates (coccoliths). Chalky micropores are not related to chalk,
but the pore structure is similar. These pores occur between
recrystallized mud particles and may be formed either during early
meteoric leaching or deeper burial diagenesis (Pittman, 1971; Budd,
1989; Moshier, 1989). The pores typically form in low-energy, muddy,

platform-interior facies.



- Four natural classes of mudstone microporosity exist in
the database: (1) Tertiary chalk, (2) Cretaceous chalk, (3)
chalky micropores with uniform distribution, and (4) chalky
micropores with patchy distribution. The distinction
between Tertiary and Cretaceous chalks is important
because a general decrease in the size of calcareous
nannoplankton across the Cretaceous—Tertiary boundary
(Macleod et al., 1997) corresponds to a decrease in

reservoir quality in Tertiary chalks (Hardman, 1983).



500 pm

chalk, f = 25.4%, k = 0.734 md;



chalky microporosity, f = 4.9%, k = 0.01 md;
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patchily distributed chalky microporosity, no porosity, or
permeability measurements are available. Individual pores are
too small to be seen, but porosity can be discerned because of
impregnation with blue-dyed epoxy.



Moldic Porosity:

- Moldic pores are secondary pores formed by the
selective, complete, or partial dissolution and
recrystallization of grains or crystals. This definition is
slightly modified from Choquette and Pray (1970) by
iIncluding pores formed by partial dissolution and
recrystallization. A distinctive difference in solubility
between grains and/or crystals and the surrounding matrix
IS commonly needed and is commonly related to

mineralogical differences (Moore, 2001).



microporosity, f = 21.7%, k = 3.45md;
Some of the moldic micropores are marked by m




macroporosity, f = 24.74%, k = 35.2 md.




Intraparticle Porosity:
- Intraparticle pores are pore spaces occurring within grains, either of primary
origin or formed through the decay of organic material in carbonate skeletons.

A skeletal wall will therefore enclose, at least partly, most intraparticle

porosity.

| , P _:“. . l,_-_,__'?";.h."t.t‘-s_;' . M}J_"‘:;t J .
Intraparticle porosity in fusulinid foraminifera. f =
16.0%, k = 1.25 md.



Vuggy Porosity:

- The definition of vuggy porosity in this article follows the
definition of Choquette and Pray (1970). Vuggy pores are
secondary solution pores that are not fabric selective (i.e.,
the pores cut across grains and/or cement boundaries).
The pores are of irregular size and shape and may or may
not be interconnected. Many vugs are solution-enlarged
molds where the outlines of the precursor grains are

poorly defined.



- Vuggy porosity (as defined by Choquette and Pray, 1970)
is formed by the dissolution of cement, matrix, and grains.
This typically occurs under the influence of near-surface
meteoric waters (Loucks and Handford, 1992; Saller et
al., 1994), but may also be related to deep-burial fluids
(Moore and Druckman, 1981; Choquette and James,
1987; Moore and Heydari, 1993). Meteoric diagenesis is
commonly associated with sea level low stands and
subaerial exposure surfaces in humid climates (Loucks
and Hand ford, 1992; Saller et al., 1994). Deep-burial
dissolutionmay be related to hydrocarbon maturation and
shale dewatering (Moore, 1989). Fluid-migration
pathways, such as fractures and faults, are the main

controls on vuggy porosity distribution during deep burial.

SRR, | =~ T

Core slabs showing vuggy
porosity. Plug-derived porosities
and permeabilities are strongly
dependent on the location of core
plugs because of the large vug
sizes.



.- i
POROSITY-PERMEABILITY
RELATIONSHIPS

- Porosity-permeability crossplots are used for predicting permeability from
porosity or vice versa. Borehole porosity can be estimated from wire-line
logs, but apart from the nuclear magnetic resonance log, there is no log
that measures permeability. Therefore, it is common practice to establish
porosity-permeability relationships through core analysis and then
estimate permeability where cores do not exist using porosity logs and
core derived porosity-permeability relationships. This method works well
when there is a simple relationship between porosity and permeability, as
In many sandstone reservoirs. In carbonate reservoirs, however, the
porosity-permeability relationship is very complex because of the great

variability of pore types.
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Interparticle Microporosity

a
Patchy Porosity Distribution
v = 1.4955Ln(x) — 3.2488
n=76, R*=0.79

Porosity cutoff at 1 md = 8.1%
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Uniform Porosity Distribution
y=1.8347Ln(x) — 5.0328
n=51,R*=0.88
Porosity cutoff at 1 md = 15.3%

25 30 35 40 45 50
He-porosity (%)

Interparticle micropores (10-50 mm pore diameter);

0 5 10 15 20



Log k (md)

Interparticle Mesoporosity

Patchy Porosity Distribution | |Uniform Porosity Distribution
y =1.5253Ln(x) — 2.5953 y=1.715Ln(x)— 4.0711
n=92, R* =0.85 n=82 R*=0.86
Porosity cutoff at 1 md = 5.8%] |Porosity cutoffat 1 md = 11.1%

5 10 15 20 25 30 35 40 45
He-porosity (%)

interparticle mesopores (50—-100 mm pore diameter);

50



c Interparticle Macroporosity

Log k (md)

Patchy Porosity Distribution| |Uniform Porosity Distribution
y = 1.8095Ln(x) — 3.0914 y = 1.8589Ln(x) —3.7318
n=21,R?*=0.87 n=75 R*=0.88
Porosity cutoff at 1 md = 5.5%] | Porosity cutoff at 1 md = 8.2%

0 5 10 15 20 25 30 35 40 45 50
He-porosity (%)

interparticle macropores (>100 mm pore diameter);



- If Imd is used as the critical flow parameter, the porosity
cutoff for interparticle microporosity (10-50-mm pore
diameter) is reduced from 15.3% at uniform porosity
distribution to 8.1%, when the porosity is patchily
distributed. Similarly, for meso- (50-100-mm pore
diameter) and macroporosity (>100-mm pore diameter),
the porosity cutoff is reduced from 11.1 to 5.8 and 8.2 to
5.5%, respectively, for the corresponding 1-md

permeabillity.



- Intercrystalline Pore-Type Classes:
d Intercrystalline Microporosity

Patchy Porosity Distribution
¥ = 1.4912Ln(x) — 4.5699
n=12, R*=0.79
Porosity cutoff at 1 md = 18.6%

Uniform Porosity Distribution
y=19711Ln(x) — 6.1918
n=8 R*=0.92
Porosity cutoff at 1 md = 22.4%

0 5 10 15 20 25 30 35 40 45 50
He=porosity (%)

Intercrystalline micropores (10—20 mm pore diameter);



e Intercrystalline Mesoporosity

Patchy Porosity Distribution
y = 1.5036Ln(x) — 3.317
n=37, R?=0.92
Porosity cutoff at 1 md = 9.1%

Log k (md)

Uniform Porosity Distribution
y = 0.1305x — 2,2155
n=46, R*=0.94

Porosity cutoff at 1 md = 16.9%

0 5 10 15 20 25 30 35 40 45
He-porosity (%)

intercrystalline mesopores (20—-60 mm pore diameter);



Log k (md)

Intercrystalline Macroporosity

Patchy Porosity Distribution
No data available

Uniform Porosity Distributio
y = 1.399Ln(x) — 2.3081
n =109, R*=0.80
Porosity cutoff at 1 md = 5.4%

] 10 15 20 25 30 35 40 45
He=porosity (%)

intercrystalline macropores (>60 mm pore diameter).



- As for interparticle pores, pore size and porosity distribution
have a clear control on k/f. A significant increase in k/f exists
when pore size increases and/or porosity distribution becomes
patchier. If 1 md is used as the critical flow parameter, the
porosity cutoff for intercrystalline microporosity (10— 20-mm
pore diameter) is reduced from 22.4% at uniform porosity
distribution to 18.6%, when the porosity is patchily distributed.
Similarly, for mesoporosity (20-60-mm pore diameter), the
porosity cutoff is reduced from 16.9 to 9.1%. Uniformly
distributed macroporosity (>60-mm pore diameter) has a

porosity cutoff of 5.4%.



- Mudstone Micropore Classes:

a Chalk
4
Cretaceous Chalk
3 y =—0,0011x2 + 0,1264x — 2.5012
n=758, R?=0.81
2 Porosity cutoff at 1 md = 25.8%
T 1
E
-
2 0
-
—
Tertiary Chalk
&
5 i y==0,0012x2 + 0,1434x — 3.2331
B - n = 966, R? = 0.80
Porosity cutoff at 1 md = 31.3%
_3‘ T T T T T T #—

0 5 10 15 20 25 30 35 40 45 50
He-porosity (%)

chalk



Log k (md)

Chalky Microporosity

Patchy Porosity Distribution
n=1

Uniform Porosity Distribution
y=0.0861x—2.382
n=9, R*=0.96
Porosity cutoff at 1 md = 27.0%

5 10 15 20 25 30 35 40 45
He-porosity (%)

chalky micropores



- If 1 md is used as the critical flow parameter, the porosity
cutoff is 25.8% for Cretaceous chalk, 31.3% for Tertiary
chalk, and 27.0% for chalky microporosity with uniform
distribution. The only sample with patchy distribution of
chalky micropores shows a significantly higher k/f than for

samples with a uniform porosity distribution



- Moldic Pore-Type Classes:

c Moldic Porosity
4
Moldic Microporosity
3 y=0.1281x—=2,1901 -
n=281,R*=0.86 s ba ada A& &
, | |Porosity cutoff at 1 md = 16.2% Wt ‘/’—r'r'*/‘_T
T ry i a
& . .
&
=]
E
-
g
Moldic Macroporosity
y = 1E=05x" — 0,0028x° + 0.2141x — 23746
n =231, R?=0.90
Porosity cutoff at 1 md = 13.1%
4 i 1 I I I I I I 1 I
0 5 10 15 20 25 30 35 40 45 50

He=porosity (%)

moldic pores,



- If 1 md is used as the critical flow parameter, the porosity
cutoff is 13.1% for macropores and 16.2% for micropores.
Differences in k/f for the two pore-type classes result from
a slight overall reduction in pore-throat diameters, as
confirmed by mercury capillary-pressure measurements,
and Is probably related to the presence of intramold

matrix in moldic micropores.



Intraparticle Porosity:

- If Imd Is used as the critical flow parameter, the porosity
cutoff is 14.1%.

d Intraparticle Porosity

y=0.1534x - 2.1991
n=76, R?=0.86
Porosity cutoff at 1 md = 14.1%

0 5 10 15 20 25 30 35 40 45 50
He-porosity (%)



Vuggy Porosity:

e Vuggy Porosity

y =0.2613x = 1.3407
n =88, R?=0.50
Porosity cutoff at 1 md = 6.2%

0 5 10 15 20 25 30 35 40 45 50
He-porosity (%)

vuggy pores.



- If 1 md is used as the critical flow parameter, the porosity
cutoff is 6.2%. The poor relationship between porosity and
permeability is most likely related to a low sample-to vug
size ratio (many vugs are more than 1 cm [0.4 in.] In
diameter). It may also be argued that the scatter in data
points results from a variable degree of connectivity
between the vugs, but such an explanation could not be

confirmed by the present data set.



Comparison to Other Classification
Systems

1. The effect of patchy porosity distribution on the porosity-

permeability relationship

2. The split between interparticle and intercrystal porosity (as in
Choquette and Pray, 1970) and the introduction of mudstone

microporosity

3. The use of pore-size differentiation instead of particle size and
sorting differentiation (samples in the studied data set show widely
different pore sizes within each of Lucia’s, 1995, 1999, interparticle
classes because of the variable extent of interparticle and

intercrystalline cementation and allochem sorting)



Table 2. New Porosity Classification System*

Pore Type Pore Size Pore Distribution Pore Fabric R?
Interparticle Micropores (10-50 um) Uniform Interpartide, uniform micropores 0.88
Patchy Interpartide, patchy micropores 0.79
Mesopores (50-100 um) Uniform Interpartide, uniform mesopores 0.86
Patchy Interpartide, patchy mesopores 0.85
Macropores (>100 um) Uniform Interpartide, uniform macropores 0.88
Patchy Interpartide, patchy macropores 0.87
Intercrystalline Micropores (10-20 um) Uniform Intercrystalline, uniform micropores 0.92
Patchy Intercrystalline, patchy micropores 0.79
Mesopores (20-60 pm) Uniform Intercrystalline, uniform mesopores 0.94
Patchy Intercrystalline, patchy mesopores 0.92
Macropores (>60 um) Uniform Intercrystalline, uniform macropores 0.80

Patchy Intercrystalline, patchy macropores
Intraparticle Intrapartide 0.86
Moldic Micropores (<10-20 um) Moldic micropores 0.86
Macropores (>20-30 um) Moldic macropores 0.90
Vuggy Vuggy 0.50
Mudstone microporosity Micropores (<10 um) Tertiary chalk 0.80
Cretaceous chalk 0.81
Uniform Chalky micropores, uniform 0.96

Patchy Chalky micropores, patchy

*Partly based on Choquette and Pray (1970) and Lucia (1983, 1995, 1999). Porosity-permeability coefficients of determination (R?) are based on samples from the
present study.






Primary porosity in the carbonate reservoir




Non-porous carbonate facies
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Porosity Types in the carbonates




Diagenetic impact on the porosity
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Sandstone reservoir with intergranular porosity




Reservoir Facies Classification

F1: Massive anhydrite and pervasive anhydrite plugging

F2: Dolomitic mudstone often with fenestral fabric.

F3: Stromatolite boundstone oftan with microbial communities.
F4: Lime skeletal / peloid wackestone to packstone

F5: Medium-grained ooid grainstone with oomoldic porosity.
F6: Coarse - grained skeletal grainstone with interparticles porosity.
F7: Fine-grained peloid / ooid grainstone.

F8: Intra formational conglomerate.

F9: Heavily bioturbated mudstone.

F10: Fossiliferous mudstone / wackestone.

F11: Dark argillaceous mudstone with lamination.

F12: Thrombolite boundstone.



Reservoir Characterization

Core NG Helium Porosity (%) Air Permeability (mD)

facies ' MAX MEAN MIN Std. Dev. MAX MEAN MIN Std. Dev.
CF1 9 3.56 0.90 0.13 1.07 0.782 0.154 0.045 0.236
CF2 160 24.22 4.52 0.10 5.11 158.692 5.467 0.019 18.748
CF3 15 15.12 3.19 0.67 4.06 15.172 2.722 0.028 4.479
CF4 180 24.30 5.98 0.01 6.24 108.512 5.622 0.001 14.879
CF5 179 36.32 15.79 0.21 9.02 242.815 | 11.297 0.010 28.535
CF6 135 32.86 9.44 0.11 7.60 213.197 8.274 0.019 23.955
CF7 195 36.64 10.15 0.06 9.86 346.693 | 17.412 0.023 51.922
CF8 6 9.99 5.06 0.90 3.74 42.134 7.132 0.043 17.147
CF9 53 26.66 7.57 1.23 7.55 80.529 6.039 0.002 15.461
CF10 13 15.75 5.27 0.16 4.75 24.195 5.256 0.043 9.072
CF11 0 - - - - - - - -
CF12 5 1.26 1.07 0.73 0.21 0.116 0.063 0.037 0.031




Reservoir Characterization on the carbonate reservoir
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Reservoir Rock Typing
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RT1: Argillaceous mudstone/claystone

RT2: Lime bioclastic mud-dominated wackestone

RT3: Lime bioclastic grain-dominated packstone/grainstone

RT4: Lime coarse grain Rudist dominated wackestone/packstone

RT5: Dolomitized bioclastic mud-dominated wackestone/packstone




RT2: Lime bioclastic mud-dominatedwackestone
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Petrophysical correlation across the Field
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Figure 1-8a - Example of borehole wall images and its interpretation in terms of depositional units, texture, sedimentary structures and dip data.
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L
General Processes Used For Recording

Physical Parameters

Natural or spontaneous phenomena
Basic equipment : a single delector (passive system)
MNatural gamma radioactivity
Total
Spectrometry
Spontaneous potential
Temperature - Bottom hole temperature
Formation pressure
Borehole diameter
Borehole deviation




Physical properties measured by inducing from the formation
a response to an excitation
Basic equipment : source or emitter + detector (s)
Resistivity
Long-spacing devices
non-focused
focused
Short-spacing devices
non-focused
focused
Ultra-long spacing devices
Conductivity
Dielectric constant (electromagnetic propagation)
Magnetic susceptibility
Total magnetic field
Electronic density
Photoelectric index
Neutron interactions
Epithermal neutron absorption
Thermal neutron absorption
Induced vy ray spectrometry by inelastic collisions
Induced y ray spectrometry by thermal neutron absorption
Induced vy ray spectrometry by thermal neutron activation
Thermal neutron decay time
Relaxation time of proton spin (nuclear magnetic resonance)
Acoustic velocity
Acoustic-signal amplitude
Well seismics
Formation dip - Dipmeter
Borehole imagery
electric
ultrasonic
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Basic of Logging

- Depth of investigation
- Vertical Resolution

Depth Of Investigation Of Logging Tools

Logging Tools
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Intrinsic vertical resolution of Schlumberger tools

(completed from Allen et al., 1988, and Theys, 1991).

Measurement Vertical |Sampling Remarks
resolution| rate
SP 8-10 ft 6 in. Only if salinity contrast
Phasor Induction
deep 84 - 96 in. 8 in.
medium 60-72in.
enhanced 36 in.
SFL 30in. 6in.
AlT 18in. 6in 1,20r4 1t
Gives an image of the invasion
Laterolog
DLL 28 in. B in.
ARI 8in. 0.5 in. Gives an electrical image
HALS 8-16in. 0.5in. Gives an electrical image
Microlog
Microinverse | 2 -4 in. 2Zin. The measure is not focalized
Micronormal 4 in,
MicroSFL 2-3in. 2in. Focalized
Dipmeter - Imagery
HDT 0.5 in. 0.2 in.
SHDT 0.4 in. 0.1in.
FMS 0.2in. 0.1in. Gives an electrical image
FMi 0.2in. 0.11in. Gives an electrical image
EPT
Transit time 2in. 2or04in,
Aftenuation 2in. 2or04in] Shale indicator
Litho-density
Density 15in.  |6or2in.
enhanced 4 in.
Pe 2in.
Neutron
Porosity 15in. |6or2in.
resolution matched 24 in.
enhanced 12in.
CMR 6in. 6 in. Estimation of porosity,
permeability, pore size
TDT 6 - 66 in.*
Gamma ray
Standard 8-12in.| 6in.
Spectroscopy| 8- 12 in. Measures Th, U and K
Sonic
Standard 48 in. 6 in.
BHC 24 in.
Six-inch At 6 in. 1.2in
DsI 6in, Measures compressional
shear & Stoneley wave velocity

* depends on the time constant and the depth interval on which the mean value

is computed.



Table 2-4
Recommended maximum logging speeds.

Measurement Maximum logging speed
(ft/min) (m/min)
SP 100 30
Induction 83 25
Laterolog 50 15
Rxo measurement 33 10
Neutron TC = 2 sec 30 9
GR TC =3 sec 20 6
Density TC =4 sec 15 4.5
TDT
Spectrometry 15 45
Sonic Transit time 60 18
Attenuation 35 10
Dipmeter 50 15
Imagery 15 4.5




- Data Transmission:
1. Cable transmission
2. Mud pulse telemeter

Mud

Positive
pulse

Negative
pulse

Siren|

Pressure
I
.
Tim;
Pressure
i
- N
Time
Pressure

Time




Fixed-mount Pulser

o .

Retriewahle Pulser with Stinger



Caliper Logs

What Do They Measure?
Size and shape of a recently drilled hole.

How Do They Work?

* Mechanical arms record hole size
* Hydraulic systems with calibrated
potentiometers.

How Are They Used?

* Hole size used to correct other logs
« Hole volume for cementing
« Lithologic information
‘washouts indicative of formation
properties
« Stress field from hole break-out

Courtesy of ExxonMobil YL el £ L 4 - Well Log Data









Generalities On Nuclear
Measurements



Principle of the different nuclear logging techniques

Measurement principle

Natural radioactivity
Natural gamma (y) radioactivity (total)
Natural gamma (y ) ray spectroscopy

Radiation induced by neutron bombardment
Spectroscopy of y rays emitted by the activation of oxygen:
160(n,p)1EN(p")

180*(y = 6.13 MeV)1€0

or the activation of a wide range of elements

Spectroscopy of y rays emitted from fast neutron interactions
(mainly inelastic):

e.g.: 180(n,n"y = 6.13 MeV) 160, t;,5,=1.7 x 10-" sec

Spectroscopy of y rays emitted by thermal neutron capture
Epithermal neutron density at a fixed distance from a high-energy
neutron source

Thermal neutron density at a fixed distance from a high-energy
neutron source, by:

(a) detection of neutrons themselves

(b) detection of gamma rays arising from capture of the thermal
neutrons

Decay rate of the thermal neutron population.  The thermal neutron
density is sampled at two different times between neutron bursts, by
detecting the capture gamma rays.




Compton scattering of gamma rays

Gamma rays emitted from a source are scattered by the formation.
The count-rate of those reaching the detector is function of the
formation density.

Photoelectric absorption of low energy gamma rays
Low-energy gamma absorption and measurement of the photoelec-
tric absorption index of the formation, related to the lithology.

Decay of proton spin precession induced by a strong magnetic
field

Protons are caused to precess about the local Earth magnetic field
by a strong DC magnetic pulse.

This precession decays with a time characteristic of the formation
fluids, porosity and pore size.




Y ray

magnetic field
H

) Figure 10-1 -

The three types of
radiation. Only the gamma
ray is not deviated by a
magnetic field as it is not
charged.

Lead
shieid




- a —radiation: An a -particle may be emitted from an atomic
nucleus during radioactive decay. It is positively charged and
has two protons and two neutrons. It is physically identical to
the nucleus of the helium atom. By a -emission the element of
atomic number Z is transformed into an element of atomic
number Z - 2 and the number of nucleons decreases from A to
A -4,

- B particles: B particles are high-energy, high-speed electrons
or positrons emitted by certain types of radioactive nuclei such
as potassium-40. The beta particles emitted are a form of

lonizing radiation also known as beta rays



- y-radiation: y-radiation may be considered as an
electromagnetic wave similar to visible light or X-rays, or
as a particle or photon. Gamma rays are electromagnetic
radiations emitted from an atomic nucleus during
radioactive decay. These radiations are characterized by
wave lengths in the range of 10 to 10-*! cm, equivalent to

frequencies ranging from 10%° to 104! sec-1
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Pair production

- When the photon energy is above the threshold value of 1.022 MeV,
the interaction of photon and matter leads to pair production, it means
the production of a negatron (or negative electron) and a positron (or

positive electron) each with an energy of 0.51 1 MeV

Orbits

Figure 9-5 - Schematic o
pair production at a
nucleus

(courtesy of

Schiumberger).




Compton scattering

- When the incident photon collides with an electron its energy is
divided between the kinetic energy E = mv2 given to the electron
ejected from its atom with initial velocity v and a photon "scattered" in
a direction making an angle with the original incident direction (energy
IS betweenl1.022 MeV and 150 KeV).

- This type of reaction is called Compton scattering and it is the
reaction figuring mainly in density measurements. The scattering
effect is sensitive to the electron density of the formation (number of
electrons per unit volume). The macroscopic cross section in a
material consisting of atoms of mass A, and atomic number Z, is

expressed by:



Zco = Ocgo (Nay/4) pp Z (9-9)

where:
2,0 Is the macroscopic Compton cross section

Og, IS the Compton cross section

N,, is the Avogadro’s number (6.022x1023 mol-1)
p, the material density.

Z represents the number of electrons per atom.



Orbits Scattered
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Figure 9-7 - Schematic

Compton of the Compton
recoil process.
Incident electron Geometrical relations in
Yy ray the Compton process.
(courtesy of
Schlumberger).
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Photoelectric effect

- In the course of a collision with an electron a photon loses part of its
initial energy and for a certain energy level it can transfer all its
remaining energy to the electron in the form of kinetic energy. The
electron is ejected from its atom and the photon disappears. The
gamma ray is absorbed (energy is less than 150 KeV).

- The microscopic cross-section of this reaction, T, has been found to
be related to the atomic number of the target atom, T, and the energy

of the incident gamma ray, Ey, by the following relation:

T atom = 12.1 [(2)48 1 (E,)31°]

The unit is the barns / atom



- The photoelectric effect is highest when the gammaray energy Iis
small and the atomic number of the element high. For the most
abundant rocks composing the Earth’s crust, it becomes the dominant
process for gamma ray energies below about 100 keV. It is at the
origin of a measurement that is sensitive to the average atomic
number of the formations and so to the lithology.

Orbits Ejected e ™
photoelectron

Figure 9-8 -
Schematic of the
photoelectric process
(courtesy of
Schlumberger).

Incident
T ray
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Neutron radiation

- Neutron radiation is a kind of ionizing radiation which
consists of free neutrons. A result of nuclear fission or
nuclear fusion, it consists of the release of free neutrons
from atoms, and these free neutrons react with nuclei of
other atoms to form new isotopes, which, Iin turn, may

produce radiation.



Neutron energy Energy range

0.0-0.025 eV Cold neutrons

0.025 eV Thermal neutrons

0.025-0.4 eV Epithermal neutrons

04-06 eV Cadmium neutrons
06-1eV EpiCadmium neutrons
1-10 eV Slow neutrons

10-300 eV Resonance neutrons

300 ev—1 MeV Intermediate neutrons

1-20 MeV Fast neutrons

> 20 MeV Relativistic neutrons
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Minerals and rocks containing radioactive
elements

Main radioactive elements

Element Isotope Percentage | Emissions | Half life |Relative
of the {year) |abundance
total element| « |8 | v in Earth's
(%) crust (ppm)
Primeval natural gamma -ray emitters
Potassium 40y 0.0118 1 | 1] 13x10%| 25
Uranium 9 235(y 0.72 gd|sd|a|71x108]| o002

Secondary gamma-ray emitters by their daughters
Uranium series 298 99.27 gd | gd
Thorium series 292Th 7d | 5d

b lasx102| 3
b 1.4x1u1ﬁl 12




Probability of emission

per disintegration

0.5 1 1.9 2
Gamma ray energy (MeV)

2.5
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Figure 10-10 - Diagramatic sketch showing possible association and
time of empiacement of uranium with common constituents of marine
black shales. Uranium is represented by black squares

(from Swanson, 1960).
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Total Natural Radioactivity Measurement

- The measurement of the total natural radioactivity of the

formations crossed by a well is known as the gamma ray log.

- The gamma-ray sonde contains generally one detector of
scintillation-counter type. This type of counter is more efficient
than the Geiger-Mueller counters previously used in older tools.

Its dimension is shorter allowing a better vertical resolution.

- The detector records all the gamma rays emitted by the
formation above some practical lower energy limit (on the order
of 100 keV).



steel chamber

low pressure gas

Steel chamber high pressure gas

Figure 9-11 - Typical jonizafion chamber.

yrays
Scintillating y )
crystal N
Photocathod Photo electron
surface 100 V
200 V
— 300 V
400 V 5
i iR 500 v
vacuum
600 V
— Collector
700 V

Figure 9-10 - Typical Geiger-Mueller counter.




- Any gamma-ray flux generated in a formation at a distance
X from the borehole wall must cross the thickness x of this
formation of density and a thickness h of the hole filled of
mud of density p,, before reaching the detector. From this
fact it is easy to understand that the borehole environment
will affect the GR measurement. In addition, one must take
Into account that the mud can itself be radioactive due to
Its content in bentonite and sometimes in KCI, and in barite
which makes the mud denser. Consequently, to evaluate
the actual radioactivity of the formation corrections for

borehole influence must be previously achieved.



Figure 11-2 - The initial gamma-
ray flux, W,, generated at distan-
ce x from the borehole wall and
crossing a section h in the bore-
hole filled by non-radioactive
mud of density p,, has a redu-
ced intensily when reaching the
detector located in the well . The

total spectrum recorded is repro-
duced on the top.



- Units:
- The global radioactivity was originally expressed in ug Ra
equivalent /tonne. Now the unit is the A.P.I. (for American

Petroleum Institute).

- The definition of the API unit comes from an artificially
radioactive formation, constructed at the Houston University
(see further the paragraph on Calibrations) to simulate about
twice the radioactivity of a shale. This artificial formation
contains approximately 4% of potassium, 24 ppm of thorium
and 12 ppm of uranium (Belknap eta/, 1959). This mixture
generates 200 API units.



- Depth of investigation:

- Gamma rays are absorbed or attenuated by the medium through
which they travel, particularly when their energy is low or the medium
dense. Consequently, a natural gamma-ray tool only detects radiation

originating from a relatively small volume surrounding the detector.

- Consequently, one can speak about a geometrical factor and

compute for each lithology type a radius of investigation.
- Vertical resolution:

- Vertical resolution is equal to the diameter of the "sphere* of
iInvestigation, and varies accordingly with formation and densities, and

gamma-ray energies.



Figure 11-8 - Sphere of influence for a detector compared o the bed
thickness, and shape of the curve (adapted from Hallenburg, 1973).



- Factors affecting the gamma-ray response:
1. Statistical variations
2. Logging speed

3. Hole condition effects

Hole fluid
Tubing. casina etc.

Cement

H W npoE

Bed thickness
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Figure 11-12 - Example illustrating the influence of mud with KCI on
the gamma ray measurement. Well 2 is situated 3 km apart from well
1. The curve shape allows the correlation of formations between wells.
The difference, A, between the two readings is approximately equal to

50 API. This difference is less important in front of more radioactive

peaks due probably to non invasion of the shale beds

(adapted from Rider, 1986).



Figure 11-13 - Response in a thin bed (from Hallenburg, 1973).



Applications of the total Gamma-Ray

Applications Qualitative Quantitative Knowing
“Clean” formations Computation of Vg, GRn and GR ax
Petrophysics Location of testing

Location of perforations

Lithology: Shale percentage GRinand GR o4
shaly formations
feldspathic sandstones
glauconitic sandstones
potassium salts Potassium percentage Combination with other log data
15 API # 1% K
Radioactive silts
Uranium ores
Geology Sedimentology:
Facies determination
Sequences
Grain size evolution
Stratigraphy:
Correlations
Unconformity detection
Transgressions
Tectonics:
Overturned series
Reverse or thrust fault detection
Core and fluid sampling

Serralog © 2004 227



- Lithology determination:

- The gamma-ray measurement is essentially used to
detect shale beds especially if SP curve is not useful.
Evaporites can also be detected and their potassium
content evaluated using charts. In first approximation 15
API corresponds to 1% of In combination with other log
data, such as resistivity, neutron, density and sonic, one
can determine the main lithologies. Silty formations can
be recognized as soon as the gamma-ray curve Is

compared to other logs.



- Sedimentology:

FACIES
123458

- The gamma-ray curve can reflect

typical grain size evolutions with

depth - fining or coarsening up
sequences - which may reflect

typical facies as illustrated by

Figure. This application requires

a calibration on core data (cf.

Chapters 3 to 5 of Well Logging

and Geology from O.& L. Serra,

, FACES “Wel B
Sha La ted sandstone
2003). y $ nmm 5 Wcro.cross bedasd sandeions
i. rou-beddedsandﬂone s Shale







- Well-to-well correlations:

- Correlations between wells are better achieved and
accurate using gamma-ray curves. This is linked to the
fact that the gamma ray measurement is practically not

affected by change in porosity or fluid content

SW BN-14 BN-IT BN-10 BN-6 BN-1

- - 1




of unconformities

- Detection

or

transgressions:

- A sudden important change in the

gamma-ray value may indicate

either an unconformity or a

transgression (cf. Chapter 11 of
Well Logging and Geology, 0. & L.
Serra, 2003).

Figura 1
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1 - Gamma and lithologic prefiles showing a

supersequence. Location on Fig. 14, Legends: see Fig. 6.
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- Tectonic applications:

- As just mentioned above, the gamma -ray curves are not
affected by the fluid and porosity and when analyzed
carefully they allow the detection of overturned or repeat
Intervals (cf. Chapter 8 of Well Logging and Geology, 0. &
L. Serra, 2003).
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Figure 11-19 - Two examples of overturned folds very well detected
thanks to gamma-ray curve analysis. The repeaied peaks are indicaled
by letters (courtesy of Schiumberger).
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Figure 11-20 - Example of reverse fault perfectly detected by analysis

of the gamma-ray curve

(from Schiumberger, Weill Evaluation Conference, Iran, 1976).



- Estimation of shale fraction of reservoir rocks:

- In sedimentary rocks, shales are the most common radioactive rocks
(if we ignore potassium salts), with the radiation arising primarily from
the clay fraction. To a reasonable approximation we can consider that

the GR level is related to shaliness by:

Ven < (Venlar = [(GR - GRyn)/(GRgy, - GRyip)] (11-17)

- It must be understood that the GR response may include radioactivity
from sources other than shale, for instance from orthoclase,
microcline or micas often present in chemically immature sandstones,
or from heavy radioactive mienrals such as zircon and monazite. For
this reason, the right side of the equation is an upper limit to Vsh.
Relationships between gamma-ray values and shale content must be

adapted to typical formations or calibrated on core data



0%

0.4

0.2

(GR - GR)/(GRpax = GRyin)

20 40 60 80 100%

Shale volume (V)

Figure 11-21 - Evaluation of the shale content from the gamma-ray
values as a function of the age of the shaly formations

(from Dresser Atlas document).



- Depth control of sampling, perforating and testing
equipment:
- Positioning wireline testers, sidewall core sampling, or

perforations is better achieved using gamma ray curves in

open holes, or even through tubing or casing.
- The evaluation of injection profiles:

- The gamma ray is sometimes used Iin connection with

radioactive tracers operations.



Natural Gamma Ray Spectrometery Tool
(NGT)

- The gamma rays emitted by the three decay series have a number of
discrete energies. In Figure are shown the three corresponding
theoretical gamma-ray emission spectra. Each  spectrum
characterizes a decay series, each series has a spectral "signature”

that enables its presence to be discerned.
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- To obtain a quantitative evaluation of thorium, uranium and potassium
from an analysis of the total energy distribution, it is helpful to divide

the spectrum into two regions:

1. the high-energy region, with the three main peaks: Thallium 208TI at 2.62
MeV (from the 232Th family), Bismuth 214Bi at 1.76 MeV (from the 23811
family), and Potassium 40K at 1.46 MeV;

2. the low-energy region, covering the energy range of the gamma rays resulting

from Compton scattering in the formation, plus lower-energy emissions from

the thorium and uranium series.

Channol number
8

0 0.5 10 .. 15 20 2.5 30
Gamma ray energy (MeV




- The Schlumberger Natural Gamma ray Spectrometry tool
(NGS or NGT) uses five windows.
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- Depth of investigation:

- The depth of investigation depends not only on hole size,
mud-density and formation bulk density, but on the
energies of the gamma rays themselves Higher-energy

radiation can reach the detector from deeper in the
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- Vertical resolution:

- In average, for 90% of the signal, it corresponds to approximately
three times the size of the detector crystal, so close to 36 in. But,
once again it depends on the rock density and the energy of the
gamma ray. Enhancement techniques can be used to improve the

vertical resolution. In that case one can expect a vertical resolution

close to 18 In.




- Environmental and other effects on the measurement:

1. Time constant (vertical smoothing), logging speed, dead
time

2. The borehole

3. Tool position

4. Casing

5. Bed thickness



L
Applications

— -

Application Qualitative Quantitative Knowing

Separation between shaly formations Computation of the shale content Thaine Kmiine Thimax: Kmax-

Petrophysics and radioactive reservoirs Computation of the percentage of The mineralogical model and
the minerals composing the rocks the logging parameters of the
minerals - Other log data.

Lithological type The mineralogical model and
Lithology Nature of radicactive Mineral admixture the logging parameters of the
minerals minerals - Other log data,
Clay type Clay mineral admixture The mineralogical model and
Sedimentology Facies the logging parameters of the
Geology Environment minerals - Cther log data.
Geochemical Source-rock Uranium percentage in source-rock.
evaluation
Stratigraphy Correlations
Unconformities
Tectonics Repeated formations
Overturned formations




- Lithology:
- 1- Evaporitic environment:

- Differentiate between shales and potassium salts; these last
minerals having a much higher potassium content than the clay
minerals, and no thorium content since thorium is insoluble and
can be considered as an indicator of detrital origin. So in front
of potassium evaporates, the Th curve will be flat and near
zero while the K curve will show a high percentage of
potassium and a shape generally very similar to that of the total
gamma ray, at least if at the same time the uranium curve is flat

and near zero (showing little organic material in the rock)
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Example of response in evaporite. Observe at 4065

by the value of Pe in the uncaved zone.

Figure. 12-26

the high potassium value (higher than 10%). It indicates the existence
of sylvite in this halite interval. The sylvite presence is confirmed
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- 2- Sand-shale series:
- Very often pure clean sands or sandstones exhibit very low
radioactivity; because their thorium, uranium and potassium contents

are very low too. They correspond to orthoquartzites.

- But sometimes sands or sandstones contain significant percentages
of clay, are radioactive. In these cases, To compute a better shale
percentage by using the shale indicators derived from the thorium or

the potassium, or from their sum (CGR):

(Vsnhh = (Th=Thyin) / (Thep = Thygin)

(Vank = (K - Kiin) 1 (Kgh = Kiyin)
(Vshlcar = (CGR - CGRy, ) / (CGRg, - CGR i)



Figure 12-29 - (a}) Formation response due fo thorium, thorium and
potassium; thorium, potassium and uranium. (b) Comparison of the
three shale indicators with the total gamma ray

(from Serra et al., 1980).



- 3- Feldspathic sandstones or arkoses.

- They will show some potassium content — dependent on the feldspar
percentage in the sands - due to the high percentage of potassium in

feldspars.
- 4- Heavy minerals within sandstones:

- Very often heavy minerals like zircon, allanite, monazite, and sphene
are thorium and uranium-bearing, which give rise to some
radioactivity in pure sandstones. This case is easy to recognize
because the potassium level is enerally very low, only the thorium
and uranium curves being active. Consequently, this type of
sandstone shows a very high Th/K ratio. At the same time pb and the
apparent matrix density (p ma)a generally increase owing to th

denser minerals present.



Figure 12-36 - Example of heavy mineral influence on thorium and ura-
nium. Observe the very low potassium content and the increase of
density while neutron does not change.



- 5- Shaly sands and sandstones.

- The combination of NGS and LDT* data (P, or Uma) allows the

determination of the clay mineral types present within the sands.

Monazite (25,000 ppm)
Zircon (3,000 ppm)
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Figure 12-37 - Thorium vs potassium cross-plot with the position of the
main radioactive minerals. These minerals are represented by ellipses
fo indicate that their elemental compaosition can vary in relation with the

importance of the weathering.
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Figure 12-38 - Pe vs potassium with the position of the main minerals.



- 6- Carbonate series:

- In these rocks the standard gamma ray is very often a
poor clay indicator, because the observed radioactivity is
not related to clay content of the rock, but to the presence
of uranium. In a pure carbonate of a chemical origin, the
thorium will be absent, since it is insoluble. So, if the
spectrometry measurement shows a carbonate level with
thorium and potassium near zero this corresponds to a
pure carbonate. If at the same time the uranium is zero
too, this carbonate was precipitated in an oxidizing

environment
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Figure 12-40 - Example of NGS response in a carbonate series
showing that the radiocaclivity is mainly due to uranium. The
thorium{uranium ratio is in many place lower than 2.



- If the levels show a variable percentage of uranium, the
corresponding carbonate can either have been deposited in a
reducing environment (restricted), generally favorable also to
the conservation of organic material and to its transformation
Into hydrocarbon; or, if it Is compact (low porosity) it
corresponds to a carbonate with stylolites, in which impurities
such as uranium, organic matter and even clay minerals, are
concentrated. Peaks of uranium can also correspond to
phosphate-bearing levels. If Th and K are present with
uranium, this indicates the presence of clays in the carbonate
(clayey carbonates to mark). If K is present with or without
uranium it can correspond to a carbonate of algal origin or a
carbonate with glauconite.



- Well-to-well correlations:

- As the gamma ray, the natural radioactivity spectrometry
Is very usefull for correlations either of facies or
chronostratigraphic. Particularly, peaks on thorium curves
are often used for well to well correlations. as they
correspond generally to volcanic ashes (or bentonitic
levels) and, consequently, can be considered as
deposited at exactly the same time over a wide area
(Lock & Hoyer, 1971).



- Detection of unconformities:

- Abrupt changes in the mean thorium/potassium ratio are
generally indicative of important variations in the
proportion of radioactive minerals which occur when there
are changes in geological conditions of deposition. These

correspond to unconformities.
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Figure 12-41 - Unconformity detected by the NGS and not easily seen
on other logs (from WEC, Venezuela, 1980).



- Fracture and stylolite detection:

- In reducing conditions the circulation of hydrothermal or
underground waters In fractures may cause precipitation
of the uranium salt, uraninite. So fractures can be
recognized by peaks of uranium. The presence of
fractures must be confirmed by other methods because
uranium is often associated with stylolites: during
compaction, insoluble impurities (clay minerals, organic
maitter, iron oxides ... ) are often concentrated in very thin
layers called stylolites, which can also give radioactive

peaks
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- lgneous rock recognition:

- Except for syenite, most of the intrusive igneous rocks show a Th/U
ratio close to 4. Deviations from this value seem to indicate
weathering effects during which uranium is dissolved and eliminated
by rain and running waters; or oxidizing conditions before

crystallization of magma, or intrusions of basic igneous rocks.

Th § Weathering effect Th = 1300
SYENITE U =

J/ GRANITE

average (U = 4.35, Th = 15.2)

GRANODIORITE

? ?
- -

DIORITE = GRANITE
< GRANODIORITE
w DIORITE
GABBRO - GABBRO

ULTRA BASIC {Dunite, peridotite)
s 0 15 U (ppm)

Figure 12-46 - Thorium vs uranium cross-plot
for the main ignecus rocks.



- Diagenesis:

- Under compaction, montmorillonite is transformed into
llite, passing through an intermediate mixed-layer
illitemontmorillonite phase (Hassan et &/, 1976). This
results in a decrease of the Th/K ratio with depth. In

undercompacted shales this trend will be reversed.
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The carbolog method
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The uranium concentration
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TQTAL ORGANIC MATTER IN ROCK, IN PERCENY
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On the left: diagram showing possible relation of uranium
content to total organic matter as controlled by the proportion of humic
and sapropelic material making up the organic matter. On the right: oil

yield of a marine black shale as a function of the total organic matter
(from Swanson, 1960).
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Relation between uranium (expressed as a
uranium/potassium ratio) and organic carbon
(from Supernaw et al.. 1978).
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Two example of A log R, TOC and S, curves determined
on 2 wells of Algeria (from Malla & Baci, 1995).
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The value of LOM, determined from measured PRV
equivalents for well DJD-1, was calculated at 11.5
(from Malla & Baci, 1995).
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Method based on cross - plot
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Characterization of source rocks by cross-plots combi-
ning sonic transit time and resistivity (left diagram), or gamma ray and
resistivity (right diagram) (from Autric & Dumesnil, 1985).
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Method based on nuclear mesurment
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and C and O atoms (courtesy of Schlumberger).
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Typical Inelastic collision spectrum. Observe the peaks
of Oxygen and Carbon. They are more characteristic and so can be
easily detected by window energy detection collimated around these

peaks (courtesy of Schlumberger).
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Definition

Neutron tools were the first logging instruments to use radioactive
sources for determining the porosity of the formation. After the later
introduction of the gamma-gamma density tool, the neutron
measurement was applied in conjunction with the density porosity
reading in order to recognize and correct for effects of shale and
gas.

Neutron tool response is dominated by the concentration of hydrogen
atoms in the formation. In clean reservoirs containing little or no
shale, the neutron log response will provide a good measure of
formation porosity if liquid-filled pore spaces contain hydrogen, as is
the case when pores are filled with oil or water (hydrogen index =1).
By contrast, when logging shaly or gas-bearing formations, a
combination of Neutron and Density readings will often be required
for accurate porosity assessment.
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Generalized Neutron Logging Tool illustrates a typical neutron logging tool.



The electrically neutral neutron has a mass that is practically identical to
that of the hydrogen atom. The neutrons that are emitted from a neutron
source have a high energy of several million electron volts (MeV). After
emission, they collide with the nuclei within the borehole fluid and
formation materials. With each collision, the neutrons loose some of
their energy. The largest loss of energy occurs when the neutrons
collide with hydrogen atoms. The rate at which the neutrons slow-down
depends largely on the amount of hydrogen in the formation.

With each collision the neutrons slow down, until the neutrons reach
a lower (epithermal) energy state and then continue to lose energy
until they reach an even lower (thermal) energy state of about 0.025
eV. At this energy the neutrons are in thermal equilibrium with other
nuclei in the formation. At thermal speeds, the neutrons will
eventually be captured by a nucleus. When a nucleus captures a
thermal neutron, a gamma ray (called a gamma ray of capture)is
emitted to dissipate excess energy within the atom.



Collision causing Gamma-Ray
Start slow down

High energy neutron source reaches thermal energy

Emission, Traveling and Collisions of a Neutron in a Formation
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the target nucleus, and the scattering cross section. (At the nuclear level, the
term cross section is defined as the effective area within which a neutron
must pass in order to interact with an atomic nucleus. Such interactions are
typically classified either as neutron capture or as neutron scatter. The cross-
section is a probabilistic value dependent on the nature and energy of the
particle, as well as the nature of the capturing or scattering nucleus.

Depending on the type of tool being used, either the gamma rays emitted
after neutron capture, the epithermal neutrons or the thermal neutrons will
be counted.

The principles of neutron logging are summarized below:

A neutron source emits a continuous flux of high-energy neutrons.

Collisions with formation nuclei reduce the neutron energy -thereby
slowing it down.

At thermal energy levels (approximately 0.025 eV), neutrons are
captured.

Neutron capture results in an emission of gamma rays.

Depending on the type of tool, the detector measures the slowed
down neutrons and/or emitted gamma rays.
Neutron logging devices contain one or more detectors and a neutron source
that continuously emits energetic (fast) neutrons.
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Porosity (or the hydrogen index) can be determined by measuring
epithermal or thermal neutron populations, or by measuring capture
gamma rays, or any combination thereof.

Neutron logs that detect epithermal neutrons are referred to as sidewall
neutron logs. By contrast, the compensated neutron log, in widespread
use today, detects thermal neutrons, using two neutron detectors to
reduce borehole effects. Single thermal neutron detector tools, of poorer
guality, are also available in many areas of the world.

Capture gamma rays are used for porosity determination, and logs of
this type are referred to as neutron-gamma logs. The responses of
these devices are dependent upon such variables as porosity, lithology,
hole size, hole rugosity, fluid type, and temperature.

Compensated and sidewall logs use corrections from their electronic
panels to account for some of these variables, while neutron-gamma
logs require departure curves (provided in chart books) to make
corrections.
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Neutron tools are used primarily to determine:
porosity, usually in combination with the density tool

gas detection, usually in combination with the density
tool, but also with a sonic tool

shale volume determination, in combination with the
density tool

lithology indication, again in combination with the

density log and/or sonic log
formation fluid type.

Depending on the device, these applications may be made in either
open or cased holes. Additionally, because neutrons are able to
penetrate steel casing and cement, these logs can be used for
depth tie-in as well as providing information on porosity and
hydrocarbon saturations in cased holes



Density log




Density Log

The formation density log is a porosity log that measures electron
density of a formation.

The density logging device is a contact tool which consists of a
medium-energy gamma ray source that emits gamma rays into a

formation. The gamma ray source is either Cobalt-60 or Cesium-
137.

A density derived porosity curve is sometimes presented in tracks
#2 and #3 along with the bulk density and correction curve . The
most frequently used scales are a range of 2.0 to 3.0 gm/cc or 1.95
to 2.95 gm/cc across two tracks. Track #1 contains a gamma ray
log and caliper

Formulation bulk density is a function of matrix density,
porosity, and density of the fluid in the pores (salt, mud, fresh
mud, or hydrocarbons). Density is one of the most important
pieces of data in formation evaluation. In the majority of the
wells drilled, density is the primary indicator of porosity. In
combination with other measurements, it may also be used to
indicate lithology and formation fluid type.
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The tool can be used by itself, but is typically run in combination with
other tools, such as the compensated neutron and resistivity tools. The
formation density skid device ,Schematic of the Dual-Spacing Formation
Density Logging Device (FDC) carries a gamma ray source and two
detectors, referred to as the short-spacing and long-spacing detectors

The tool employs a radioactive source which continuously emits
gamma rays. These pass through the mudcake and enter the
formation, where they progressively lose energy until they are either
completely absorbed by the rock matrix or they return to one the two
gamma ray detectors in the tool

Dense formations absorb many gamma rays, while low-density
formations absorb fewer. Thus, high-count rates at the detectors
indicate low-density formations, whereas low count rates at the
detectors indicate high-density formations .For example, in a thick
anhydrite bed the detector count rates are very low, while in a highly
washed-out zone of the hole, simulating an extremely low-density
formation, the count rate at the detectors is extremely high.
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: Photoelectric effect, where a gamma ray collides with an
electron, is absorbed, and transfers all of its energy to that electron. In
this case, the electron is ejected from the atom.

Compton scattering, where a gamma ray collides with an
electron orbiting some nucleus. In this case, the electron is ejected
from its orbit and the incident gamma ray loses energy.

Pair production, where a gamma ray interacts with an atom to
produce an electron and positron. These will later recombine to form
another gamma ray.

Photoelectric interaction can be monitored to find the lithology-related
parameter, Pe. For the conventional density measurement, only the
Compton scattering of gamma rays is of interest. Conventional
logging sources do not emit gamma rays with sufficient energies to
induce pair production, therefore pair production will not be a topic of
this discussion.



To determine density porosity, either by chart or by
calculation, the matrix density and type of fluid in the
borehole must be known. The formula for calculating density
porosity is:

Where invasion of formation is shallow, low density of the
formation’s hydrocarbon will increase density porosity. Oil does
not significantly affect density porosity, but gas does (gas affect).
Hilchie (1978) suggests using a gas density of 0.7 gm/cc for fluid
density (pf) in the density porosity formula if gas density In
unknown.

The density log gives reliable porosity values, provided the
borehole is smooth, the formation is shale-free, and the pore
space does not contain gas. In shaly formations and/or gas-
bearing zones, it iIs necessary to refine the interpretative
model to make allowances for these additions or substitutions
to the rock system.
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LITHOLOGIC DENSITY TOOL

The Pe, or lithodensity log, run with the lithodensity tool
(LDT), is another version of the standard formation
density log. In addition to the bulk density (rb), the tool
also measures the photoelectric absorption index
(Pe) of the formation. This new parameter enables a
lithological interpretation to be made without prior
knowledge of porosity.

The photoelectric effect occurs when a gamma ray
collides with an electron and is absorbed in the process,
so that all of its energy Is transferred to the electron.
The probability of this reaction taking place depends
upon the energy of the incident gamma rays and the
type of atom. The photoelectric absorption index of an
atom increases as Its atomic number, Z, increases.

Pe = (0.1 . Zeff) 36
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and uses a skid containing a gamma ray source and two gamma ray
detectors held against the borehole wall by a spring-actuated arm.
Gamma rays are emitted from the tool and are scattered by the
formation, losing energy until they are absorbed via the photoelectric
effect.

At a finite distance from the source, there is a gamma ray energy
spectrum as shown in in the figure given below. Variation in
Gamma Ray Spectrum for Formations of Different Densities.
This Figure also shows that an increase in the formation density
results in a decrease in the number of gamma rays detected
over the whole spectrum.

A

Count
Rate

L L P
Energy (K g V)

Courtesy Schlumberger Well Services



For formations of constant density but different photoelectric
absorption coefficients, the gamma ray spectrum is only altered
at lower energies, as indicated in the next figure .

Observing the gamma ray spectrum, we notice that region H only
supplies information relating to the density of the formation,
whereas region L provides data relating to both the electron
density and the Pe value. By comparing the counts in the energy
windows H and L, the Pe can be measured. The gamma ray
spectrum at the short spacing detector is only analyzed for a
density measurement, which Is used to correct the formation
density determined from the long spacing spectrum for effects of
mud-cake and rugosity.

The photoelectric absorption coefficient is virtually independent of
porosity, there being only a slight decrease in the coefficient as
the porosity increases. Similarly, the fluid content of the formation
has little effect. Simple lithologies, such as pure sandstone and
anhydrite, can be read directly from logs using Pe curves. Look
for the following readings in the most commonly occurring
reservoir rocks and evaporites.
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Application of density log

It can assist the geologist to: (1) identify
evaporite minerals, (2) detect gas-
bearing Zzones, (3) determine
hydrocarbon density, and (4) evaluate
shaly sand reservoirs and complex

lithologles.



Sonic Log

[

_— = ——

ﬂn.ﬂ Mﬂﬂnh

e e s i

AN A

Basic Sonic logging system (courtesy Schiumbsargar. & SPE)




Uses

1) Determine porosity of reservoir rock

2) Improve correlation and interpretation of seismic records
3) ldentify zones with abnormally high pressures

4) Assist in identifying lithology

9) Estimate secondary pore space

6) Indicate mechanical integrity of reservoir rocks and formations that
surround them (in conjunction with density data)

7) Estimate rock permeability



Principle
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Basic Sonic logging system (courtesy Schlumberger, © SPE)
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MICROSEC/FT

Vertical Resolution

» defined as distance between ;—é
receivers = %
3200 g)

+ determines vertical resolution, “@

h ~ span

DEPTH, 1

3300

3 SPAN I SPAN

3 and 1-ft spacing sonic logs recorded in a west texas well
(Bassiouni, 1994)



Lateral Resolution

Depth of investigation Critical T-R Spacing

* varies with wavelength, » short enough for pulse to be
2, Which is related to formation detected
velocity, v, and tool frequency,
f. L=v/f

* |ong enough to allow 1st arrival

_ o _ to be compressional wave and
* Depth of investigation, Di~ 3 A not mud wave

+ Rule of thumb, 0.75 to 3.75 ft. « f(standoff, v, 4/Vsr)

* Indirectly related to T-R spacing . porehole enlargement effects



Cycle Skipping

Cause: Dampening of first arrival at
far receiver

Effect:

Sonic curve shows spiking or an
abrupt change towards a higher
travel time

Occurs in:

* Unconsolidated formations
(particularly gas bearing);

» fractured formations:

* transmitter weak and/or receiver
poor
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L
Types

* Basic Sonic (obsolete)
* BHC - borehole compensated sonic (most common)
« LSS - Long spaced sonic

* Array Sonic or Full Waveform Sonic

Dipole Shear Imager (DSI)



Basic Sonic Log

* One transmitter and two or three receivers, T-R1-R2 -R3
« Borehole and sonde tilt problems

1| |
=N =|
1]
| < H
= 5]
E% =

) ®) - o)

Single transmitter, two-receiver configuration
Western Atlas (1993)



Example-Borehole enlargement Effects
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Borehole compensated Sonic (BHC)

* Automatically compensates for
borehole effects and sonde tilt

» System of upper and lower
transmitters bounding two sets
of receivers.

Upper tfansmitter

BB

F\

g — —
ra

<
Upper rneceiver R

F
2

Lower receiver
o

3-c'

w"
Lower transmitter




Comparison of BHC with Basic Sonic

CALIPER CONV. SONIC LOG BHC SONIC LOG

1" SPAN 1" SPAN
100 10 40{100 10 40

B
T e

00801

“\

= = ] .
— o
:_:;'b
E -f""'—_=-




ty
L
.

- linear time averaged relationship
L
L
f

Eq
At =
for clean and consolidated sandstones

Porosi

— uniformly distributed small pores

\Y%
— empirically determined

Wyllie




Wyllie Equation

Fluid point
G T T T i et e s
h=—"% = i
350 | |
2 |
* |
) :
|
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I
N\
U il 1 T / r
50 Matrix point =uu 150 200
At 5. uS€C/ft At usec/ft At, microsec/ft
SS 555 fresh 189
Ims 47 .6 salt 185
dol 43.5

Anhy  50.0



Porosity —uncompacted sands

Evidence: when Atlog > 100 microsec/ft in overlying shale

Result: Estimated porosity too high

Correction: Observed transit times are greater in uncompacted sands;
thus apply empirical correction factor, Cp

t
lo ma |
p=—°

te—1t C
f "ma “p
Estimate Cp from overlying shale zone
g
P 100

where the shale compaction coefficient, ¢ , ranges from 0.8 < ¢ < 1.3.



Porosity —uncompacted sands-Fluid Effect

Sonic primarily independent of fluid type
« Know lithology, can calculate porosity

* Fluid Effect in high porosity formations with high HC saturation.
Correct by:

oil: ¢ :0.9*¢us

corr
. — E
oas : q)corr =0.7 (I)S

« Apply after compaction correction.
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Transit time - porosity transform (Raymer-Hunt)

— based on field observation

— vyields slightly greater porosity in the 5 to 25% range

— does not require compaction correction

—1
log "ma

t

t
o=C
log
Where

C ranges from 0.625 to 0.700
Typical value used in practice is C = 0.67
C = 0.6 for gas-saturated formations

At ., nsec/ft

Ss 56.0
Lms 49.0
Dolo 44.0



Porosity comparison

50 .
Time average
Field observation :
Raymer - Hunt
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Secondary Porosity

— Sonic ignores secondary 0
porosity; i.e, vugs and fractures

.
(=]
T

| Average Line For Dol
Vo= 24,000 f1./sec.
Yy= 5,300 ft./sec.

o
=

— Result: Measured transit time <
than would be calculated for
given porosity

[=z]
E=J

]
=
el

| e
BestFit Line ForData| 7
Vn=18,500ft./sec.

Vi= 6,100 1./sec. |

-]
=

Transit Time: Micro Seconds/Ft.

—w
=

— Estimate Secondary porosity
by 100,

o™ W 2 % 2 M

¢ 2 = ¢l‘ — ¢S Porosity: Fraction

Transit Time vs Porosity

_ _ For Doiomite

— Alternative: Develop specific
empil’ica| r9|ati0n5hips for Example of Porosity — Velocity Correlation in Dolomite
heterogeneous systems The example illustrates travel times which are

consistently greater than predicted by the
“time-average equation”. (Corelab)



Combination Neutron Density Log

The Combination Neutron-Density Log is a combination porosity
log. Besides its use a porosity device, it is also used to
determine lithology and to detect gas-bearing zones. The
Neutron-Density Log consists of neutron and density curves
recorded Iin tracks #2 and #3 and a caliper and gamma ray log in
track #1.

Where an /ncrease in density porosity occurs along with a
decrease in neutron porosity in a gas-bearing zone, it is called
gas effect, Gas effect is created by gas in the pores. Gas in the
pores causes the density log to record too high a porosity (i.e.
gas in lighter than oil or water), and causes the neutron log to
record too low a porosity (i.e. gas has a lower concentration of
hydrogen atoms than oil or water). The effect of gas on the
Neutron-Density Log is a very important log response because it
helps a geologist to detect gas-bearing zones.
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Gas Bearing Formation Interpretation

» Effect of gas on neutron log response

— lower hydrogen content than calibrated value, thus higher count rate
resulting in low ¢..

— Shale effect is opposite to the gas effect, makes detection extremely
difficult

» Effect of gas on density log response
— presence of gas reduces bulk density, resulting in a high apparent porosity.

— shale effect can increase or decrease bulk density, dependent on shale’s
bulk density.

» Effect of gas on sonic log response
— increase in sonic log porosity in poorly-consolidated sands.
— not quantitative or predictable
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IEha1e_

Type |: mirror image,
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Saturation profile)

Type II: asymmedtric
gas crossover

Type llI: Shaly gas sand

|dealized example of saturation effects on density and neutron logs.
(Helander,1983)
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The gamma ray log measures the natural radiation of a formation, and primarily
functions as a lithology log. It helps differentiate shales (high radioactivity) form
sands, carbonates, and anhydrites (low radioactivity). The neutron log is a
porosity device that is used to measure the amount of hydrogen in a formation.
The density log is a porosity device that measures electron density. When these
three logs are used together (i.e. Combination Gamma Ray Neutron-Density
log), lithologies can be determined.

M-N* Lithology Plot

The M-N* plot requires a sonic log along with neutron and density logs. The
sonic log is a porosity log that measures interval transit time. A sonic log,
neutron log, and density log are all necessary to calculate the lithology
dependent variables M* and N*. M* and N* values are essentially independent
of matrix porosity (sucrosic and intergranular).

MID™ Lithology Plot

The MID* (Matrix Identification) plot, like the M-N" is a crossplot technique which
helps identify lithology and secondary porosity. Also, like M-N" plot, the MID" plot
requires data from neutron, density, and sonic logs.
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POROSITY DETERMINATION
FROM LOGS
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OPENHOLE LOG EVALUATION

Well Log

SP Resistivity
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Presenter
Presentation Notes
This figure depicts the basic setup of the logging process.  A wireline truck with a spool of logging cable is setup so that the sonde (measuring equipment) can be lowered into the wellbore.  The logging tools measure different properties, such as spontaneous potential and formation resistivity, as the sonde is brought to the surface.  The information is processed by a computer in the logging vehicle, and is interpreted by an engineer or geologist.    
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POROSITY DETERMINATION BY LOGGING

Increasing Increasing Increasing
radioactivity resistivity porosity
— — —

—

Gamma Resisitivity Porosity
ray


Presenter
Presentation Notes
An engineer or geologist can interpret the log readings to reach certain conclusions about the formation.  For example, a decrease in radioactivity from the gamma ray log could indicate the presence of a sandstone formation.  An increase in resistivity may indicate the presence of hydrocarbons.  And, an increase in a porosity log might indicate that the formation has porosity and is permeable.
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POROSITY LOG TYPES

3 Main Log Types
- Bulk density
- Sonic (acoustic)

- Compensated neutron

These logs do not measures porosity directly. To accurately
calculate porosity, the analyst must know:

sFormation lithology

* Fluid in pores of sampled reservoir volume


Presenter
Presentation Notes
.
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DENSITY LOGS

- Uses radioactive source to generate gamma rays

- Gamma ray collides with electrons in formation, losing
energy

- Detector measures intensity of back-scattered gamma
rays, which is related to electron density of the
formation

- Electron density is a measure of bulk density



R - :
DENSITY LOGS

- Bulk density, p,,, Is dependent upon:
- Lithology
- Porosity
- Density and saturation of fluids in pores

- Saturation is fraction of pore volume occupied by a particular
fluid (intensive)
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Mud cake
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Formation (p,)
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Presenter
Presentation Notes
To minimize the influence of the mud column, the source and detector, mounted on a skid, are shielded.  The openings of the shields are applied against the wall of the borehole by means of an eccentering arm.  The force exerted is substantial, and the skid has a plow shaped leading edge.  Therefore, it is able to cut through soft mud cakes usually encountered at medium and shallow depths.  Some mud cake may remain, however, and is “seen” by the tool as part of the formation.  This must be accounted for.
A correction is needed when the contact between the skid and the formations is not perfect (due to mud cake or roughness of the borehole wall).  In unfavorable cases, this correction can be fairly large.  If only one detector is used, the correction is not easy to determine, as it depends on the thickness, the weight, and even the composition of the mud cake or mud interposed between the skid and formation.
Using two detectors, a correction can be made for unfavorable conditions.


R - :
BULK DENSITY

Pp = Ema (1— 49"'\[31‘ (|}>
Y Y

Matrix Fluids In
flushed zone

*Measures electron density of a formation
«Strong function of formation bulk density
*Matrix bulk density varies with lithology

—Sandstone 2.65 g/cc

—Limestone 2.71 g/cc

—Dolomite 2.87 g/cc
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POROSITY FROM DENSITY LOG

Porosity equation

(I): Pma — Pp
Pma — Pr

Fluid density equation
Pf =Pmf Oxo * Ph (1_ Sxo)

We usually assume the fluid density (p;) is between 1.0 and 1.1. If gas is present, the
actual p; will be < 1.0 and the calculated porosity will be too high.

Pmi is the mud filtrate density, g/cc
P is the hydrocarbon density, g/cc
S is the saturation of the flush/zone, decimal



Presenter
Presentation Notes
We usually assume the fluid density (f) is between 1.0 and 1.1.  If gas is present, the actual f will be < 1.0 and the calculated porosity will be too high.  
	mf	is the mud filtrate density, g/cc
	h	is the hydrocarbon density, g/cc
	Sxo 	is the saturation of the flush/zone, decimal
The bulk density log is a pad device.  This means that the log must be in constant contact with the borehole wall.  This is accomplished through the use of a caliper arm on the back side of the density device.  When the pad loses contact with the formation either through rugosity or washouts, the bulk density reading is affected.  The reading from the density log is always too low in the presence of rugosity or washout.  This results in a calculated porosity that is much too high, because the density log is reading in essence the porosity of the washout or the gap between the porosity, pad, and the borehole wall.  Although density logs are compensated for the presence of mudcake, this compensation is often inadequate to account for all of the effects of borehole breakouts, washouts, and rugosity.  


JIN 9

Working equation (hydrocarbon zone)

Pp =¢Sxo Pmf +¢(1_Sxo)phc

+ Vsh Psh T (1_ (I) _ Vsh)pma

Pp -
d) S'xo Pmt =
d) (1 - Sxo) Phe =

Vsh Psh -
1- d) - Vsh =

Recorded parameter (bulk volum
Mud filtrate component
Hydrocarbon component

Shale component

Matrix component
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Presentation Notes
b	=	Recorded parameter (bulk volume)
 Sxo mf	=	Mud filtrate component
 (1 - Sxo) hc	=	Hydrocarbon component
Vsh sh	=	Shale component
1 -  - Vsh	=	Matrix component


T —
DENSITY LOGS

- If minimal shale, V , = 0

* It pre = pms = P, then

“Pp=0ps-(1-9) Pma

¢=¢d _pma_pb
Pma — Pr

¢4 = Porosity from density log, fraction

Pma = Density of formation matrix, g/cm3

p, = Bulk density from log measurement, g/cm?

ps = Density of fluid in rock pores, g/cm?

phe = Density of hydrocarbons in rock pores, g/cm?3
pmi = Density of mud filtrate, g/cm?

psn = Density of shale, g/cm?3

V¢, = Volume of shale, fraction

S,, = Mud filtrate saturation in zone invaded by mud filtrate,



Presenter
Presentation Notes
d	=	Porosity from density log, fraction
ma	=	Density of formation matrix, g/cm3
b	=	Bulk density from log measurement, g/cm3
f	=	Density of fluid in rock pores, g/cm3
hc	=	Density of hydrocarbons in rock pores, g/cm3
mf	=	Density of mud filtrate, g/cm3
sh	=	Density of shale, g/cm3
Vsh	=	Volume of shale, fraction
Sxo	=	Mud filtrate saturation in zone invaded by mud�		filtrate, fraction
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R - :
NEUTRON LOG

- Logging tool emits high energy neutrons into
formation

- Neutrons collide with nuclel of formation’s atoms

- Neutrons lose energy (velocity) with each collision



R - :
NEUTRON LOG

- The most energy is lost when colliding with a
hydrogen atom nucleus

- Neutrons are slowed sufficiently to be captured by
nuclei

- Capturing nuclei become excited and emit gamma
rays



R - :
NEUTRON LOG

- Depending on type of logging tool either gamma rays
or non-captured neutrons are recorded

- Log records porosity based on neutrons captured by
formation

- If hydrogen is In pore space, porosity is related to the
ratio of neutrons emitted to those counted as
captured

- Neutron log reports porosity, calibrated assuming
calcite matrix and fresh water in pores, If these
assumptions are invalid we must correct the neutron
porosity value



e —
NEUTRON LOG

Theoretical equation

Oy =0 Sy Onmp + 0 (1 —Sxo ) Oninc

+ Vsh (I)sh + (1_ (I) — Vsh)(I)Nma

dn = Recorded parameter dnma = POrosity of matrix fraction

d S, Onme = Mud filtrate portion dnne = Porosity of formation saturated with

¢ (1-S,,) dnne = Hydrocarbon portion hydrocarbon fluid, fraction

Vg, Onen = Shale portion dnms = POrosity saturated with mud filtrate, fraction
(1 - ¢ - Vg,) dnpe = Matrix portion where ¢ = True V¢, = Volume of shale, fraction

porosity of rock S,, = Mud filtrate saturation in zone invaded

¢ = Porosity from neutron log measurement, fraction by mud filtrate, fraction
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Presentation Notes
N	=	Recorded parameter
 Sxo Nmf 	=	Mud filtrate portion
 (1 - Sxo) Nhc	=	Hydrocarbon portion
Vsh Nsh	=	Shale portion
(1 -  - Vsh) Nhc	=	Matrix portion
where
 	=	True porosity of rock
N 	=	Porosity from neutron log measurement, �		fraction
Nma 	=	Porosity of matrix fraction
Nhc	=	Porosity of formation saturated with�		hydrocarbon fluid, fraction
Nmf	=	Porosity saturated with mud filtrate,�		fraction
Vsh	=	Volume of shale, fraction
Sxo	=	Mud filtrate saturation in zone invaded�		by mud filtrate, fraction
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Presenter
Presentation Notes
Uses a radioactive source to bombard the formation with neutrons
For a given formation, amount of hydrogen in the formation (I.e. hydrogen index) impacts the number of neutrons that reach the receiver
A large hydrogen index implies a large liquid-filled porosity (oil or water).  The hydrogen index is calibrated to limestone porosity.  If the lithology is sandstone or dolomite, the following chart can be used to correct the porosity.



ACOUSTIC (SONIC) LOG

f______"-___”

Ld LJ
A
N

Ld LJ

~
I~

| Upper
transmitter

. Lower
transmitter

Tool usually consists of one sound
transmitter (above) and two
receivers (below)

Sound is generated, travels
through formation

Elapsed time between sound wave
at receiver 1 vs receiver 2 is
dependent upon density of medium
through which the sound traveled
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Presentation Notes
Sonic tools are usually borehole compensated (BHC), which substantially reduces spurious effects at hole size changes as well as errors due to sonde tilt.
As shown in the figure, the BHC system uses two transmitters, one above and one below a pair of sonic receivers.  When one of the transmitters is pulsed, the sound wave enters the formation, travels along the wellbore and triggers both of the receivers; the time elapsed between the sound reaching each receiver is recorded.  The speed of sound in the sonic sonde and mud is less than that in the formations.  Accordingly, the first arrivals of sound energy the receivers corresponds to the sound-travel paths in the formation near the borehole wall.  
The BHC tranmitters are pulsed alternately, and the delta t readings are averaged.  In this way, the tool is compensated for tilt.  
If the travel time for the matrix is known, then porosity can be calculated.


Compressional Rayleigh

waves waves Mud waves
AL

A A
4 N A4 \
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Presentation Notes
This figure illustrates sonic log response to an acoustic wave transmitted through a compacted formation.  The time, To, at which the acoustic wave was initiated at the transmitter, is shown for reference.  The first arrival at the receiver is the compressional wave.  The Rayleigh wave, traveling at a slower rate, arrives later and is superimposed on the compressional wave.  Following the Rayleigh waves are the slower mud waves, transmitted through the mud column and the tool.

The flexibility of borehole-compensated (BHC) equipment permits the recording of acoustic logs other than delta t.  These include the Amplitude Log for fracture detection, Cement Bond Log, and Variable Density Log.  


COMMON LITHOLOGY MATRIX
TRAVEL TIMES USED

Lithology Typical Matrix Travel
Time, Atna, psec/ft
Sandstone 55.5
Limestone 47.5
Dolomite 43.5
Anydridte 50.0
Salt 66.7
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ACOUSTIC (SONIC) LOG

Working equation

Atp =05, Aty +¢(1_ Sxo)Athc

+ Vsh Atsh + (1_ (I) _ Vsh)Atma

At = Recorded parameter, travel time read from log
d S,, At = Mud filtrate portion

¢ (1-S,,) At,. = Hydrocarbon portion

Vg, At,, = Shale portion

(1-¢-Vy) At,, = Matrix portion
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Presentation Notes
tL	=	Recorded parameter, travel time �		read from log
 Sxo tmf	=	Mud filtrate portion
 (1 - Sxo) thc	=	Hydrocarbon portion
Vsh tsh	=	Shale portion
(1 -  - Vsh) tma	=	Matrix portion


g
ACOUSTIC (SONIC) LOG

- If V,, = 0 and if hydrocarbon is liquid (i.e. At =
Aty), then

C A= ¢ AL+ (1 - ) Aty

or

At, — At
At — At

b =0 =

¢ = Porosity calculated from sonic log reading, fraction
At = Travel time reading from log, microseconds/ft
At,, = Travel time in matrix, microseconds/ft

Aty = Travel time in fluid, microseconds/ ft
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Presentation Notes
s	=	Porosity calculated from sonic log reading, fraction
tL	=	Travel time reading from log, microseconds/ft
tma 	=	Travel time in matrix, microseconds/ft
tf 	=	Travel time in fluid, microseconds/ ft
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ACOUSTIC (SONIC) LOG
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SONIC LOG

The response can be written as follows:

tlog =1lma (1_ ¢)+ tr ¢

¢= tlog _tma
tf _tma

tog = log reading, pusec/ft

t o = the matrix travel time, usec/ft
t. = the fluid travel time, pusec/ft

¢ = porosity
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Presentation Notes
Sonic log - measures the slowness of a compressional wave to travel in the formation.  
where t is travel time (slowness)
tlog is log reading, sec/ft
tma is the matrix travel time, sec/ft
tf is the fluid travel time, sec/ft
 is porosity
Matrix travel time (tma) is a function of lithology
	tma	=	53 sec/ft sandstone
	 tma 	=	46 sec/ft limestone
	 tma 	=	41 sec/ft dolomite
The sonic log measures the compressional arrival.  There are several more sophisticated sonic logs that couple a different type of log and a more sophisticated processing algorithm to determine both the shear wave arrival and the compressional wave arrival.  Using both the shear and compressional times, the log analyst can determine rock properties such as Poisson’s ratio, Young’s modulus, and bulk modulus.  These values are very important when designing hydraulic fracture treatments or when trying to determine when a well may start to produce sand.  
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EXAMPLE

Calculating Rock Porosity
Using an Acoustic Log

Calculate the porosity for the following intervals. The measured travel times from the
log are summarized in the following table.

At depth of 10,820’, accoustic log reads travel time of 65 us/ft.

Calculate porosity. Does this value agree with density and neutron
logs”?

Assume a matrix travel time, At = 51.6 psec/ft. In addition, assume the formation is
saturated with water having a At; = 189.0 usec/ft.


Presenter
Presentation Notes


Calculate the porosity for the following intervals.  The measured travel times from the log are summarized in the following table.





Assume a matrix travel time, tm = 51.6 sec/ft.  In addition, assume the formation is saturated with water having a tf = 189.0 sec/ft.
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EXAMPLE SOLUTION SONIC LOG




FACTORS AFFECTING SONIC
LOG RESPONSE

- Unconsolidated formations
- Naturally fractured formations
- Hydrocarbons (especially gas)

- Rugose salt sections
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RESPONSES OF POROSITY LOGS

The three porosity logs:
- Respond differently to different matrix compositions
- Respond differently to presence of gas or light oils

Combinations of logs can:
- Imply composition of matrix
- Indicate the type of hydrocarbon in pores
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GAS EFFECT

-Density - ¢ Is too high

-Neutron - ¢ Is too low

- Sonic - ¢ Is not significantly
affected by gas



Presenter
Presentation Notes
Remember that the density log, the neutron log, and the sonic logs do not measure porosity.  Rather, porosity is calculated from measurements such as electron density, hydrogen index and sonic travel time.  The calculated density porosity is too high only because in the calculation we typically don’t account for the fluid density change.  In other words, we assume the fluid density is 1 (or completely liquid filled) even though with gas that value is lower, which causes the calculated porosity to be too high.  The neutron porosity is too low because the hydrogen index or the hydrogen density of gas is lower; therefore, the liquid-filled porosity is what the neutron log sees.  So when gas is present, that value is lower than the actual porosity.  And finally, the sonic log is not significantly affected by gas because it reads very near the wellbore and small gas saturations do not impact the overall travel time significantly.  


ESTIMATING POROSITY FROM
WELL LOGS

Openhole logging tools are the most common method
of determining porosity:

* Less expensive than coring and may be less
risk of sticking the tool in the hole

« Coring may not be practical in unconsolidated
formations or in formations with high secondary
porosity such as vugs or natural fractures.

If porosity measurements are very important, both
coring and logging programs may be conducted so
the log-based porosity calculations can be used to
calibrated to the core-based porosity measurements.


Presenter
Presentation Notes
Determining formation porosity using open-hole porosity logging tools is the most common method of determining porosity for several reasons:
  Coring is often more expensive than logging and may be riskier in terms of sticking the tool in the hole.
  Coring may not be practical in soft unconsolidated formations or in formations with a high degree of secondary porosity such as vugs or natural fractures.

When porosity measurements are considered very important, both coring and logging programs are generally conducted.  When both measurements are available, the log-based porosity calculations are usually calibrated to the core-based porosity measurements.


Influence Of Clay-Mineral Distribution
On Effective Porosity

_ Clay
P Clay | 0 YRR
. g

* Pore-lining

« Pore-bridging Detrital Quartz
Grains

Pe

Clay Lamination

Structural Clay (I)e
(Rock Fragments,
Rip-Up Clasts,
Clay-Replaced Grains)




USED TO DEFINE FLOW UNITS

Core Lithofacies
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Presentation Notes
Petrophysical analyses of core samples are used to identify reservoir flow units and non-flow units.  The results are used to calibrate well logs, after which well logs can be used to map flow units throughout a field.


@, vV U AV L/

INn a Carbonate Reservoir

. Flow unit
Baffles/barriers

: : - A -34 SA -37
SAITA S\ 51 | SAT0 sa71 SA344 o) 571 SATSS g a6
[
3 OO 50 vvvvvv 3250

From Bastian and others
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Presentation Notes
From studies of sedimentary facies, petrology, and petrophysics,  we can correlate and map reservoir flow and non-flow (barrier/baffle) units to develop models for simulation.  The example above shows carbonate flow (YELLOW) and non-flow (GREEN) reservoir units, Pozo Rica oil field, Mexico, based on core and well-log data.  From an integrated reservoir study by H-RT.
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Resistivity Log




- Resistivity logging is a method of well logging that works by characterizing the
rock or sediment in a borehole by measuring its electrical resistivity. Resistivity is
a fundamental material property which represents how strongly a material
opposes the flow of electric current. In these logs, resistivity is measured using 4
electrical probes to eliminate the resistance of the contact leads. The log must run

in holes containing electrically conductive mud or water.

- Resistivity logging is sometimes used in mineral exploration (especially
exploration for iron and potassium) and water-well drilling, but most commonly for
formation evaluation in oil- and gas-well drilling. Most rock materials are
essentially insulators, while their enclosed fluids are conductors. Hydrocarbon
fluids are an exception, because they are almost infinitely resistive. When a
formation is porous and contains salty water, the overall resistivity will be low.
When the formation contains hydrocarbon, or contains very low porosity, its
resistivity will be high. High resistivity values may indicate a hydrocarbon bearing

formation.



- Usually while drilling, drilling fluids invade the formation,

changes in the resistivity are measured by the tool in the
Invaded zone. For this reason, several resistivity tools with
different investigation lengths are used to measure the
formation resistivity. If water based mud is used and oil is
displaced, "deeper" resistivity logs (or those of the "virgin
zone") will show lower conductivity than the invaded zone. If oll
based mud is used and water is displaced, deeper logs will
show higher conductivity than the invaded zone. This provides
not only an indication of the fluids present, but also, at least

gualitatively, whether the formation is permeable or not.


http://en.wikipedia.org/wiki/Drilling_fluid_invasion
http://en.wikipedia.org/wiki/Drilling_mud

* Basics about the Resistivity:

Resistivity measures the electric properties of the formation,
Resistivity is measured as, R in W per m,
Resistivity is the inverse of conductivity,
The ability to conduct electric current depends upon:
¢ The Volume of water,
* The Temperature of the formation,
¢ The Salinity of the formation

The Resistivity Log:

Resistivity logs measure the ability of rocks to
conduct electrical current and are scaled in units of ohm-
meters. o
The Usage: S [ S
Resistivity logs are electric logs which are used to: iUk [HEEH ]

Determine Hydrocarbon versus Water-bearing zones,
Indicate Permeable zones,
Determine Resisitivity Porosity.

..‘_'I
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)
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Resistivity Logging

There are two types of resistivity logging tools:

» Laterolog tools send a current from electrodes on the
0gging tool, through the formation, to a return electrode
ocated either at surface or downhole.

— Laterolog tools need a conductive path between the logging tool
and the formation

* Induction tools generate current loops in the formation and
measure the strength of the electromagnetic signal
created by these current loops.

- Induction tools do not require a conductive path in the borehole.
They work in oil-base muds and air-filled holes.




Basic Resistivity tool types

Laterolog Logging Tools

Induction Logging Tools




Borehole Logging Tool

Invaded
Zone

Uninvaded
Zone

Induction Response
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Rt — True Formation Resistivity

Symbols
- R,is the True Resistivity of the W mosieuviy ofthe zone

,. Resistivity of the water
im the zonea

‘ Water saturation in the MUD
zone SURROUNDING BED

formation

- Client performs reservoir analysis
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- Incorrect R, = Incorrect Analysis =

Incorrect production decision

- Symbols: R,, R, Ri, Ry, Rmer Rg
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Sw Sxo
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Rw = Resistivity of the water in the zone
Rm = Resistivity of the Mud
Rmc= Resistivity of the Mud Cake
Rxo = Resistivity of the flushed or invaded Zone
Ro = Resistivity of the Wet Zone
Sw = Water Saturation
Sxo = Saturation of the flushed or invaded Zone


Resistivity : Laterolog

. Guard electrode
Current is forced through NN , /
. i, <8 E AT BUOklng Cowndood cnd . ke
the mud into the SRS currentsAR) - Lo e B

formation




Dual Laterolog Measurement

LLS LLD

LLD: deep measurement, currect
returns to surface.

Al
Al

M2
M2

AD
M1’
M2

LLS: shallow measurement, current
returns to the tool itself.

Al
A

A2



(after van Ditzhuijzen, 1994)
- = Uninvaded reservoir - = Invaded reservoir
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Resistivity : Laterolog Shallow (LLS)

280 Hz
Current
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Loop

Measure Current
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Resistivity : Laterolog invasion effects

i e
Fim Fiee
Py
R P
Fine
S Ht
S0

RLL =Vm Rm + Vmc Rmc + Vxo Rxo + (1-Vm-Vmc-Vxo) Rt



Resistivity : Laterolog righ - Fesoution d
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Resistivity : Laterolog invasion effects

Ra = VF{m(Rm) * VRmc(RmC) + Vnm(RXD) * VRt(Rt)




Resistivity : Laterolog invasion effects

If Rmf < Rwthen Rxo < LLS < LLD <Rt
If Rmf > Rw then Rxo > LLS > LLD > Rt

Using Rxo, LLS & LLD, Rt and Di can be computed
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Groningen Effect

+ Caused by highly resistive beds
overlying the formation that is being
measured.

« This forces the deep current into
the mud column.

+ This is caused by the voltage
reference (cable-torpedo)
becoming non-zero.

« LLd reads too high
* More pronounced at low resistivity

High resistivty bed




Curve separation

results from Groningen

effect

Groningen effect
in indicator curve
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RX L
——
r= A

Figure 4-12. Illustration of ionic current through an

unimpeded path.

where R = resistivity of the water
g resistance of the cube
L length of the cube
A = area of the cube perpendicular to the
direction of measurement, L

I

Figure 4-13. Illustration of ionic current through a formation.

If R has a value of 0.05 ohm-meters and L and A
are 1 meter, then the resistance of the sample is 0.05
ohms.

If we replaced some of the water with a cubic meter
of rock composed of straight capillary tubes, the re-
sistivity of the water and the length of the sample
would not change. The rock matrix takes no active
part in the conduction of ionic current, being for all
practical purposes an insulator, so the total conducting

We see that reducing the conductive area of the sam-
ple’s face effectively increases its resistance. The ex-
posed conductive arca of the sample just discussed is
proportional to the porosity of the rock, and for our
cubic meter, the equation may be restated as:

_ RXxL

r
¢




Formation factor =

resistivity of rock saturated with fluid
resistivity of the saturating fluid

or

F—_-—E
R,

R,. the resistivity of the fluid saturated rock, was
given by the expression:

S _RxL
3

and R,, the resistivity of the saturating fluid, was
given by:

_RxL
A

r

Thus

Ax L.
F=rxL/®rxLIA =
ket d XL

The area of the cube is one meter, so our expression
for F now becomes:

- WL

¢

Porosity can also be expressed in terms ol formation
factor. By plotting formation factor versus porosity
determined from laboratory data for many different
rocks and reducing to equations the curves generated
on such graphs, a general relationship was found of
the form:

..
@!I'I

The values a and m in this expression relate porosity
to F in much the same manner as the ratio (L /L) re-
lated resistivity to FE. They describe the texture of the
rock. The value m is often called the cementation ex-
ponent, since its value tends to increase as the extent
to which a rock is cemented increases, but this is not
the only factor controlling its value. Both a and m de-
pend upon properties of the original sediment, and
upon whatever processes converted the sediment to
rock. The values of a and m will vary from one rock
to the next.




This is the so-called Archie Equation, named after
G.E. Archie, an early pioneering analyst. It works
well in carbonate reservoirs, whose porosity and per-
meability are mainly secondary.

_0.62
a P15

The Humble Equation, mainly the work of W.O.
Winsauer and his colleagues, adequately descrnibes
sandstones and other granular structures whose poros-
ity is mainly primary. Because of earlier calculating
tools incapable of handling the complex power of the
Humble Equation, a simple version of it yields similar
values. This is the Tixier Relationship:

S

q,l

To relate these rather idealized models to the resis-
tivities measured by well logs of real rock/fluid sys-
tems, let us return to an earlier expression:

F =22
R,

Transposing it:

R. = FR.

as R,,, Or apparent water resistivity. We may now
state:

R, = FR.,

wh&e R, = the system resistivity recorded by the
log

Hydrocarbon presence in the rock pores serves to
increase the measured value of R, by increasing the
length L, of the ionic path. Oil and gas behave exactly
as the rock matrix does in their effect on conductivi-
ties, i.e., they are insulators. Normally h}'dmcarb?ns
exist in the rock pores as suspended droplets, acting
like fine grains of rock inserted in the spaces between
the larger grains. The apparent resistivity of the water
in the pore space increases, as it has been shown that
F is independent of fluid resistivities.




Calculating Water Saturation

Earlier we sought to calculate water saturation by
comparing the resistivity of a zone to an idealized re-
sistivity of the same rock containing only watcr. This
poses certain difficulties, as logs do not directly mea-
sure R,. Short of actually sampling the rock and its
fluids some means must be found to determine R,
from the logs. Recalling two of our earlier statements:

R,
S, « —and R, = FR,
R,

By substituting:

FR.

S. ©« —

R,

F may be found from a porosity log and the appro-
priate F-® relationship. R,, may be obtained by mea-
suring produced samples or calculating it from the SP.
R,, of course, is direciiy measured by the logging in-
struments. We have a workable means of calculating
the ratio R,/R,. But in what way is it proportional to
S,? Archic showed that the constant of proportional-
ity, for resistivity comparisons, is a power of S. by

reducing graphs of measured laboratory data to equa-
tions. The relationship becomes:

where n, the constant of proportionality, is the resis-
tivity index exponent, commonly referred to as the
saturation exponent.

In totally oil wet rocks, n can have a value as high
as 3.0, 4.0, or greater. Such rocks are extremely rare.
In water-wet rocks, n has a value of 2.0. In shaly un-
compacted coastal sands, it has a valuc of 1.8. These
two values will suffice for virtually all situations.

The use of n as a basis of comparison works equally
well for other resistivity contrasts. Since we know that
R, = FR, and R, = FR,,, substituting these ex-
pressions for R, and R, enables us to say:

St o= B
RWI

The quantity Rya, although not directly measured, is
commonly computed by the surface computer and
printed directly on the log as an auxiliary curve. It is
computed using the equation:

R®™
a

an =

Obviously, we must have both a resistivity and a po-
rosity log in addition to some feel for the appropriate
values of a and m in order to perform the computa-
tion. :

The contrasts Ry/R, and Ru/Ru, are useful in the
field as a quick-look interpretation method for reduc-
ing the number of zones to consider. Clean salt water
zones generally exhibit R, and R, values lower than
those found in shales. These R, and R, values, when
read in a water-bearing zone near the zone of interest,
are arbitrarily assumed to be R, and R,,. It is easily
observed that when R, and R,, exceed three times the
values of R, and R,, the calculated water saturations
will be less than 60% . This is usually considered to be
the upper limit of commercial producibility. Chapter 6
will cover the technique in greater detail.




- All water saturation determinations from resistivity logs in clean (nonshaly) formations with
homogeneous intergranular porosity are based on Archie’s water saturation equation, or

variations thereof. The equation is

FR

s = R (1)

- Rw is the formation water resistivity, Rt is the true formation resistivity, and F is the formation
resistivity factor. F is usually obtained from the measured porosity of the formation through

the relationship

- where Rmf is the mud filtrate resistivity and Rxo is the flushed zone resistivity.
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- Determining R, is not simple

- Many things prevent our tool from reading R;:

- Wellbore effects
- Tool physics effects

- Formation effects

- Curve separation can help us to determine R, if we
understand why the curves are reading different

values.


Presenter
Presentation Notes
The information on the slide is self explanatory
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Figure 4-8 - The influence of bed-thickness and resistivities on the sha-
poes of the lateral and normal responses.
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Induction Log
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Induction tools are based on principles of electromagnetic induction. A magnetic field
1s generated by an AC electrical current flowing 1n a continuous loop/transmutter coil. The
magnetic field from the transnutter coil induces ground loop currents in the formation. These
ground current loops will m turn have an associated alternating magnetic field which will
induce a voltage in the recerver coil, the magnitude of which 1s proportional to the formation
conductivity.

» It works in o1l based muds and air filled holes where latero tool fails.

» Tool accuracy 1s excellent for formations having low to moderate resistivity (up to

~100 Ohm.m.

» The Dual Induction Latero (DIL) tool records three resistivity curves having

different depths of investigation ( ILD,JLM & LL3)
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Presenter
Presentation Notes
The way EM propagation tools react to invasion can be modeled by the above “parallel resistor” model.

The inverse of the total measured Resistivity is the sum of all other inverted Resistivities.
The measured Resistivity comes closest to the true formation Resistivity when the inverse of Rmud and Rxo disappears and the inverse of Rt is a big value. 
This is true for big Rmud and big Rxo and small Rt - that means resistive muds (and mud filtrates) and conductive formations.
That is why the ARC tool is called a “conductive seeking tool”.

In WBM the measured Resistivity needs to be environmentally corrected. We either measure the mud Resistivity at surface or approximate it based on charts using the salinity (salt content) of the mud and then adjust it for bit size and bottom hole temperature.

1. Rm is less than 1 ohmm
2. Rt:Rm ratio is more than 100:1



Operating Range

* 0.1 to 2000 ohmm
* Moderate Rxo < Rt

* Rt/Rm <100 (with hole diameter
considered)

» Large diameter holes with moderate Rt/Rm
and moderate Rt



1/IRa = 1/(Vg,(Rm)) + 1/(Vg,(Rmc)) + 1/(V,,

o(Rx0)) + 1/(Vg(RY))




Resistivity : Induction

If Rmf < Rw, AT10 <20 <30 <60 <90
If Rmf>Rw, AT10 > 20> 30 >60 > 90

From the 5 curves Rt can be computed




Resistivity : Induction
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Resistivity : Induction

Hole size and shape
Uncertainty in hole size or mud
resistivity can cause large
errors on the shallow curves
but much smaller errors on the
deeper measurements

47 FE - Ovarview

Out of
sequence




Resistivity : Induction

Very deep invasion
can affect even the
deepest
measurements,
non-cylindrical
invasion may affect
the Rt computation

Invasion

/

AR FF _ Mumardis



Induction Resistivity in Deviated Wells

Shallow Resistivity
Deep Resistivity

Relative dip angle

low relative high relative
dip angle dip angle
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Source locations
Well 8, 8 83 8,

Recelver

Reflector
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Implementation of seismic well velocity survey.
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VSP concept
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Separation upgoing & downgoing wave

23] s 0339y (s 5 0339y Vb zlgal 1 g3 s ol I o 5 S 93 o

Upgoing primaries and multiples

WELL SOURCE

T2

UPGOING PRIMARY P2

UPQOING PRIMARY Py

HORIZONTAL REFLECTOR 2

UPQOING INTRABED MULTIFLE M

HORIZONTAL REFLECTOR 1t

T1,T72, TG are one way vertical travel time to reflectors

1,2 and geophone G. Large offset is assumed for batter
visual clarity. Reflectors 1,2 are assumed to be horizontal.
t1:Upgoing travel time from reflector 1 t0 geaphone.
t=T1+{T1-TG}=2TI1-TG

t2:Upgoing travel time from reflector 2 to geophone.

t2=T2+(T2~TQ)=2T2-TG.
tM:Upgoing muitiple travel time from reflector 1 to geophone

tM=T1+3(T1-T2)+T2-TG =2T1+2(T1~-T2)-TQ.




Downgoing surface and intrabed multiples

T

well Source

Surface

T2 DOWNGOING SURFACE MULTIPLE M2

TG

HORIZONTAL REFLECTOR 2

DOWNGOING SURFACE MULTIPLE |

DOWNGOING INTRABED MULTIPLE M

HORIZONTAL REFLECTOR 1

RAYPATHS DESCRIBING THE DOWNGOING SURFACE MULTIPLES AND

INTRABED MULTIPLES THAT ARRIVE AT THE VSP GEOPHONE.
ASSUME THAT REFLECTORS 1, 2 ARE HORIZONTAL

t1 = 271+ TG

t2 = 2T2 + TG

tM = T1 ¢+ (T1-T2)} + (TG-T2)
=T+ T1-T2+ TG -T2

tM= 2(T1-T2) + TG
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5 2BL zlsel 5wl 215l ol :PHIMary reflection on horizon A (PA)
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(SMA) Surface multiple after reflection on horizon A 4
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Downgoing multiple creat by horizon A after reflection
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Upgoing multiple created by horizon A after reflection at
A b bug SMA sl 51 LGL ols s )y zlsel ol the surface (UMA)
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Upgoing multiple created by horizon B after reflection .7
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Mear-surface zone
Caved zone
Zone below the well
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Noise
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DIRECT ARRIVAL

CABLE NOISE |
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GEOPHONE DEPTH - 1295 METERS
SOURCE OFFSET - 209 METERS

EFFECT OF GEOPHONE CLAMPING ON SIGNAL RESPONSE.
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- Effect of cable slack on geophone signal (courtesy
Geophysical Press, from Hardage, B.A.: "Vertical Seismic Profiling, Part
A: Principles,” 1983)

ANOMALOUS CABLE
/ WAVE EVENT
b .
A

-

NO SLACK

2.5 METERS OF SLACK

A

| A
. 'O rmesee) — 2O

GEOPHONE DEPTH - 305 METERS
] SOURCE OFFSET — 209 METERS
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Tube wave (modified from Hardage, 1983)

ENERGY SOURCE

SURFAGE
GEOPHONE %
RAYLEIGH WAVE

BOREHOLE
' TUBE WAVE
P AND S
BODY WAVES
iN SITU
GEOPHONE X
ELASTIC WAVE MODES INVOLVED IN SUBSURFACE SEISM-IC RECORDING.
DEPTH TIME (MS)
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$000 L
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. ‘;;5 c
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L1 %4
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[
4
i
L
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VSP applications

1l s;lq-ﬁjﬁcgjfy)o u‘yso‘)VSP sl sy ,l8 4

XY

a. Exploration application

b. Reservoir engineering & drilling application



a. !xp‘oratlon app‘lcatlon:

- Determining reflection

- ldentification of seismic coefficients

- Comparison of VSP with synthetic seismogram
- Fresnel zone and VSP horizontal resolution

- Seismic amplitude studies

- Determining physical properties of the rocks

- Seismic wave attenuation

- Thin bed stratigraphy



b. Reservoir engineering & drilling application:

- Predicting rock condition ahead of the bit

Predicting depth of seismic reflectors

- Defining reservoir boundaries

- Locating faults

- Monitoring secondary recovery processes

- Seismic tomography & reservoir description

- Predicting high — pressure zone ahead of the bit

2 Detection of man — made fractures



Reflection coefficient
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L el ol reflection coefficient i -

R = (povy — PV)/(P1Vy + P2V2)
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|dentification of a seismic reflector
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ldentification of a selsmic reflector (courtesy
Geophyslcal Press, from Hardage, B.A.; “Vertical Seismic Profiling, Part
A: Principles,” 1983, adapted from Balch et al., 1981)

MICROSEC/FT LITH LOG

DEPTH (FT)

YIME (SEC)

AN EXAMPLE OF THE RELIABILITY WITH WHICH VSP DATA CAN OFTEN IDENTIFY

PRIMARY SEISMIC REFLECTORS. FOUR UPGOING PRIMARY REFLECTIONS ARE SHOWN
BY THE LINEUP OF BLACK PEAKS LABELED A, B, C, D. THE SUBSURFACE DEPTH OF

THE INTERFACE(S) THAT GENERATED EACH REFLECTION CAN BE DEFINED BY
EXTRAPOLATING THE APICES OF THE BLACK PEAKS DOWNWARD UNTIL THEY INTERSECT
THE FIRST BREAK LOCI OF THE DOWNGOING COMPRESSIONAL EVENT. THESE DEPTHS
ARE LABELED A', B', C', D'. THESE ARE RAW FIELD DATA. NO PROCESSING HAS BEEN
DONE OTHER THAN A NUMERICAL AGC FUNCTION HAS BEEN APPLIED TO EQUALIZE ALL

AMPLITUDES. _
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COMPARISON BETWEEN SURFACE-RECORDED REFLECTION DATA AND PROCESSED VSP
DATA AT THE USGS MADISON LIMESTONE TEST WELL NO. 2. (ALTERED FROM BALCH ET

AL., 19818).




Predicting interval velocity
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Predicting velocity ahead of the bit (Courtesy of

Seismograph Service Corporation)

Py = E-dgme
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Predicting depth of seismic reflector
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Predicting depth of a seismic reflector (courtesy
Geophysical Press, from Hardage, B. A “Vertical Seismic Profiling, Part
A: Principles,” 1983)
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Looking ahead of the bit
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Vertical Selsmic Profiling. Part A: Principies,”

Looking ahead of the bit (courtesy Geophysical Press,

from Hardage, B.A

1983)
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Predicting pore pressure & porosity ahead
of the bit
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VSP energy source
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Shot hole design for repeatable wavelet (modified from
Hardage, 1983)

Water
H | Cement
l Dynamite, small charge
h
; D J
D: 75 - 90 cm ! Cased and cemented hole

H: 12-15 meters Charge size: .65-1.5 Kg
h: 3 meters ‘



Mechanical impulse source
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Mixed P- and S-wave impulse source: Soursile (IFP).
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Mixed P- and S-wave vibrator source specially designed for
well seismic acquisition (Mertz).
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Using a marine air gun as an onshore VSP energy source
(modified from Hardage, 1983)

TO RECORDER

e P

BACKFiLL

AIR VENT WATER
e
CASING
SOIL
WATER
AIRGUN
NEARFIELD

GEOPHONE




Typical setup for a land pit Typical setup for a wet soft ground
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Possible implementations of marine sources in onshore well seismic acquisition (Schlumberger).
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The downhole geophone
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A typical land geophone and a VSP geophone (modified
fromm Hardage. 1983)

T

Spike-pianted land geophone Downhole VSP geophone

Parameters

Length: 10 cm ( 4 Inches ) Length: 3 m { 9.8 Feet )
Diameter: 3 ¢m ( one Inch ) Diameter: 10 cm ( 4 Iinches )
Weight: 200 gm (.46 Pound )  ‘weight: 100 Kg ( 225 pounds )
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Schlumberger Clamping Geophone Hydrophone

connector pads module module
v v

x 4 | A

- \ p . N .f— - - Ca—y ‘\ . = -1. l » I = T o
7-conductor Electronic Clamping Inclinometer
logging cable module module

CGG-IFP ARTEP SPH well-logging tool (IFP). Length:
2.36 m; diameter: 10 cm; weight: 94 kg: temperature and pressure
limits: 180°C and 1200 bars; seismic equipment: 3-component geo-
phone, hydrophone, inclinometer. A. Schematic. B. Picture.
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THE CSI* TOOL: A new design architecture SPECIFICATIONS
Oou’tlnm

A New Architecture Tool Schematic General Exampin of open
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Characteristics of the C51 tool (Schlumberger).



Downhole Goophone Array Specilicationss

(&} Mastar Lind comprising:
Tensicn Comprassion Unil
Soizmic Talernetry Uni
Hydraulic Power Linit
Hydraulic Clamping Linit

(b} Up o 12 individusd receivers or
Hydraulic Selamic Lind

i} ‘Wisight Uinit
{imcorporabos Motion sensor]

& giae

SURFACE CONTROLE PANEL (SCP) ACQUISITHON SURAFACE PANEL (ASF)

Urw“r;mrw-fmn 4 deg & eemperatune mas 40 deg "C
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TRIAXIAL GEOPHONE
SONDE FOR SEISMIC
MONITORING

A4S J008 narien far wefty from 47 I and abaeve

SPECIFICATIONS
Pressure rating 1040 bar
Ciperatng temperature =55 o +150°C
Shacks 1008 11 ms

of sande 1000 mim
Closed diameter from 4" to above
Opened diameter rs
Memanal anchoring force: BO0
‘Weight I2kg
Geaphane rype GEOSPACE 18 Hz
Geophong sansmivicy 23Vimis
Frequency response 20 Hz to B0 Hz
Digital version
Diyramic range 19 bies
Diigital tramsrmission
Inpit nolse |level 0.3 uv (10 He 1o 5 kHz)

Rums on mane cable

Analog version

Aumpldfier with a variable gain 40 dB w 100 dB
Calibration circuit

Dhifferential ransmissicn

Ingut neise level 05 v (10 He e 5 kHz)
Ruins on hepea cable

Example of monitoring tool (Createch).



Clamping type
Clamping force

Tool Weight

Tool Length

Tool Type

Simultaneous levels
Spacing

Combinability

Sensor Type

Diameter

Min Operating Diameter
Max Operating Diameter
{using different arm)
Max Deviation
Downhole AD conversion
Downhole Dynamic Range
Sample rate

Time between shots
Max Temperature

Max Pressure
Recording System
Logging Cable

mechanical arm
165 Ibs

10 kg/22 Ibs (shuttle)
5 ft {shuttle)
array

upto8

variable

GR

GAC* (3-200 Hz)
48 mm /1 7/8"

59 mm/ 2 516"
270 mm [ 10.6"
450 mm / 17.7"
no limit

16 bits

152 dB

051,2 4ms

15 5 (4 /1 m=/24 channels)
140°C/285°F
10000 psi
Standalone (PC)
Maono/Heptacable

Technical characteristics of the MSAT svstem
(Modular Seismic Array Tool) (Schlumberger).
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Legging truck Vibroseis Drilling

Retrieved drillpipes

Logging truc) Vibroseis

H
Male female  Latch sub ® Taskin
wet connect  top position

Bottom position Tool out

Description of the Horseis method (IFP patented) used to lower a sensor in a deviated or hor-
jzontal well. A. Setup during seismic recording. B. Lowering of the tool via the drillpipe. C. Connection
of the tool with the cable. D. Expulsion of the tool out of its protecting sleeve. E. Clamping of the tool
to the formation. F. Schematic of the connector and of the tool protecting sleeve [after Mari, Wittrisch
et al., 1990].



VSP field procedures
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Seismic while drilling

1355 e 23,5 93 4 o5 2, SWD ¢
drill bit seismic ...» Reverse ray path -

VSP — WD wsu.Normal ray path -
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Information
vertical seismic profile ;1 schlumberger s L.y 2000 Jus ,s P
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- Planning

- Operation
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- Ray trace modeling
- Real time processing
- Acquisition density
- Site survey
- Rig setup

- Drilling personnel training
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- Source handling
- Network/application performance

- Decision making process/resources
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Drill bit seismic

lis e oa S€ISMIC guided drilling .u 11, Drill bit seismic -
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Accoustic Radiation Pattern of a Tri-Cone Bit.
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ﬁ ATrel=ATf —ATds

Drillstring path
A Tds formation path
ATE

Cross correlating the accelerometer signal and the surface
sensor signal gives a relative time difference (AT, ). Once the relative
time difference is determined (AT,.). the time taken along the axial string
(ATas) could be determined and from both these information the travel
time along the formation path (AT;) can be calculated.
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Acquisition system
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Acclerometer

—T T

12-36 Geophones/Hyvdrophones

Acquisition

Correlation
Stacking
Quality conirol
Acquisition PC - { DAT Tape )

Stack Edit

Dat: transfer SQL
VSP
i Secondarv PC I'—'-‘ C Frintexr )

Schematic of Data Acquisition Process.
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Overview of signal processing
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E: young’'s modulus

D: density
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Noise removal
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Electromagnetic Transmission

While Drilling through the
formation for command and
synchronization

B
H
Shock g A Downhole Recorder Uﬂ.i.t]
Absorber
Downhole
Accelerometer

A sketch of Drill-Bit EM-SWD recoding chain
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1. Salt proximity survey.
2. Predicting Pore pressure ahead of the Bit.
3. Creating a Look Ahead Image.
4. Locating the Drill-Bit.
5. Optimizing casing/coring point.

6. Drilling hazard risk reductions.



Salt proximity survey

» Drill-Bit seismic salt proximity survey, where drill bit act as a source at
different depths with geophone array at the surface above the salt
domes .Seismic travel time are recorded and are combined with other
information such as exact location of both source and receiver and the
velocity of signal in salt and surrounding rock and distance of the top of
the salt domes helps in construction of salt dome profile. Vertical and
lateral variation observed on both the drill-bit seismic and wireline VSP
can be used to update the geological model. This survey reduced the
cost of an additional sidetrack and saved more than $ 100000 in case

of a well like Qarn Nihayda-1 of North Oman.



Predicting Pore pressure ahead of the Bit

- Pore pressure can be predicted from the amalgamation of
seismic while- Drilling velocities and other drilling parameters
In association with various modeling techniques. Accuracy in
predicted pore pressure helps to predict the optimum mud

weight to be used.



Creating a Look Ahead Image

» Seismic Image of the formation ahead of the Bit can be
generated on a real time basis which can be correlated
with the surface seismic section to make up any time
difference. This helps in correcting the position of

horizons as seen on the surface seismic sections.



Locating the Drill-Bit

» The time to depth information obtained on a real time
basis help to locate the position of the bit on the surface
seismic section with the progress in drilling activities.
This information could be successfully used to guide the

well trajectories and assigning accurate target.



Optimizing casing/coring point

» With the help of Look- Ahead image and position of the
drill bit the position of casing and coring points could be
determined with precision .Thus, by elimination of

planned casing in some cases7 save enormous money.



Drilling hazard risk reductions

» An abrupt increase in formation pressure could lead to
significant drilling hazard, particularly if the depth of hazard is
not known to a high degree of accuracy prior to drilling. When
combined with intermediate VSP’s the while drilling technique
can provide a look ahead to potential deviations from a
normal pressure regime. Deviations from the trend often
Indicate onset of overpressure, and they can be seen in
seismic while drilling results hundreds of meters ahead of the

bit, in time to take action to drill ahead safely.
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Vertical seismic profiling while drilling(VSP
— WD)
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Wireline Bore Hole Seismic VSP-WD Operations

Transfer of Wireline seismic Technology to Drilling Operations
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General operating procedures for VSP-WD surveys
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Typical Air-gun Geomaetry

The schematic diagram shows an air-gun
array towed several hundred meters behind a
seismic vessel to provide an energy source for the

acquisition of marine seismic data.



The surface system



The Source Equipment



Seismic Navigation and Processing system.
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Synchronization check of the clock and the entire system during a shallow hole test prior to running in the hole.
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Figure shows a snapshot of Realtime Processing software. VSP-WD tool's time-depth!/ velocity information is used to
continuously update the bit position on the surface seismic. This real-time information minimizes uncertainty when drilling

towards target horizons.
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1.

VSP - WD S Casgasea

It is claimed that it provides look-ahead imaging, however
the range and accuracy of this capability is still not accurately

known.

Mud Pulse telemetry of processed velocity is planned but not

presently commercial.

The biggest limitation of VSP-WD services Is to ensure a
good mechanical coupling of the VSP seismic sensor with the

borehole and high precision required on downhole clock.



Image Log




Reservoir scale deformation

- Small scale faults and fractures plus the internal structure
of faults revealed by core and image logs
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Core orientation

Up
Core marked to show ‘way-up’




L
Recognition of natural fractures
Cementation

No geometric relationship with core

Shear offset

Planar
Propagation along bedding not down core

Multiple sets



Faults In core




Natural
fractures

Fracture spacing
and layer
boundaries in
Chalk core



L
Fracture spacing

Spacing = Core slab surface area
Total fracture height in core




Fracture Spacing in Miss. Madison Ls




Coring induced fractures

- Can be mistaken for natural uncemented fractures
and so influence identification of productive zones

- Types recognized using characteristic fracture
surface morphology or fracture geometry:

- Centreline fractures
- Petal fractures

- Torsional fractures
- Scribe-knife related
- Core-plug related

- Unloading



Fracture surface morphology

C-fracture

Arrest line




Arrest lines indicating
Propagation down core
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Petal-centreline fractures




Petal-centreline fractures
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Scribe knife damage




Core discs

CORE

e ———————————————————————————



Core discs




Core disc Torsional fractures




Core spin

From Paulsen et a/. (2002)



Rubble zones In core

- Induced
- Often at base of a core
- Can develop where lithologies change



Types of downhole image tools

- Electrical Resistivity: FMS (Formation MicroScanner),
FMI (Formation Microlmager),
RAB (Resistivity-At-Bit), etc

- Ultrasonic: UBI (Ultrasonic Borehole Imager),
BHTV (BoreHole TeleViewer), etc

- Video.



Downhole video

Clear drilling fluid is required
for downhole video - not often
the case.

J. Nelson, COLOG



The first downhole
Images?

Thompson / Loran 1904,
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able 1. Baker Hughes imaging toals summaries

CSemce Tools Mud in Tools characteristics and capabilities
ompany Borehole
Pads with 24 sensors mounted on each of the six
articulated arms. giving a total of 144
conductive mif:roresistivity measurements with a vertical and
STAR Imager Fvater azimuthal resolution of 0.2 in (~5 mm). Operates

Service based mud  Alone or in combination with the Baker Hughes
CBIL imaging. Able to log images in vertical.
horizontal. highly deviated, and rugose wells.

Allows simultaneous acquisition of high-resolution

Non- microresistivity and acoustic borehole image data.
Earth Imager conductive  Has an articulated six-arm carrier. Ability to log
Service /oilbased  images in vertical, horizontal, highly deviated. and
mud rugose wells.

High-resolution borehole acoustic images in difficult
conditions. including high-porosity. unconsolidated
formations. Suitable for fracture and fault analysis.
Can be used for interpretation of the near-wellbore
stress field from borehole breakouts and drilling-

Circumferential . .
duced fractures. 250-kH fing fr
Baker Borehole ype of galll)(l::s o?acd lr:ffonnancezjj(l)rl)ae; aer ]%ol:sq:ll]igcy
Imaging Log muds Ly g

Hughes (CBIL) heavier muds. Full 360-deg. borehole imaging tool
operating in the pulse-echo mode. Generates sharp
images and boundary delineation. Its small size of
3.625 in. (92 mm) allows for operation in slim holes
as well as large-diameter holes.

High-resolution borehole acoustic images in difficult
wellbore conditions, including OBM and large
boreholes. Attains full 360° image coverage
providing sharp images and boundary delineation.
The lower operating frequency (250 kHz), along
with downhole digital signal processing (DSP).

Tl i .
;ltll(:-s;?:na ing ALl o allows for better performance in larger boreholes and
P gihs POt i highly attenuating muds. Quite effective in

ervice muds hy

horizontal wells. Tts small size 3.625 in. (92 mm)
allows for operation in slim holes, as well as large-
diameter holes up to 16 in. (406 mm). Provides an
acoustic amplitude image and a travel-time image.
By calibrating the travel-time image, it is possible fo
provide a high-resolution borehole shape.




Baker
Hughes

GeoXplorer
Imaging Service

Non-
conductive
/o1l based

mud

Provides high-resolution formation microresistivity
1maging in low-resistivity formations drilled with
nonconductive mud systems. The high-resolution
images allow for near-wellbore geological and
petrophysical reservoir evaluation. 10 sensors
mounted on six articulated arms to provide 60
microresistivity measurements, with a vertical
resolution of 0.8 1n (20 mm). and 79% borehole
coverage in an 8.0” borehole. Operates in highly
deviated boreholes. Determines an accurate net-pay
even 1n thinly bedded intervals. Allows accurate
positioning of fluid sampling or sidewall coring
tools. The simultaneous acquisition of GeoXplorer
and UltrasonicXplorer provides a more complete
picture for accurate fracture evaluation. particularly

in shale gas or fractured basement evaluation.



Table 2. Schlumberger imaging tools summaries

Provides real-time microresistivity formation images
and dip with 80% borehole coverage in 8-in
boreholes and 0.2-in image resolution in the vertical
and azimuthal directions. Used for determining net
pay in laminated sediments of fluvial and turbidite
depositional environments. visualize sedimentary
features to understand structure specially in not
cored intervals. provide high quality of bedding dip
data in highly deviated wells which improves the

conductive  structural interpretation of seismic sections

fwater and computation of the true stratigraphic thickness.

based mud  Improve modeling outputs, by supporting stochastic
modeling of the sand-shale distribution. Define
channel heights in amalgamated units. and others
such as the channel width and channel sinuosity. can
be estimated using geological analogs. based on
detailed sedimentological analysis of FMI image
data. Improve mechanical earth models for
optimizing well planning. Better understanding of
borehole stability.

FMI Fullbore
Formation
Microlmager




ﬁ

Analyze fractures, drilling-induced fractures and
the stress regime and conduct borehole stability
studies, with 100% borehole coverage. and structural
iterpretations. Two operating frequencies (measure
both amplitude and transit time) modes of image
resolution are available; standard and the higher
resolution which deliver an accurate borehole cross
section for deriving borehole stability and breakout
information. The UBI processing technique avoids
cycle skips and reduces echo losses. Image
resolution is selected to correspond to the logging
Ultrasonic All type of cnvirqnment, such as m_ud type and _density. _
Borehole ds The higher frequency yields higher image resolution.
Imager (UBI) The lower standard frequency gives a robust
measurement in highly dispersive muds. UBI tool
measures attributes of ultrasonic waves reflected at
the borehole wall and the rugosity of the borehole
wall can dominate the reflection amplitude. UBI
images are strongly sensitive to surface variations in
the borehole wall but not to variations in lithology.
Formation changes are normally seen on UBI images
only if corresponding borehole surface effects. such
as changes in rugosity or hole diameter, are present.

OBMI microresistivity imaging tool with four pads

acquires five potential difference measurements that

are used to quantitatively determine the resistivity of
Oil-Base the invaded zone.. see structural. stratigraphic. and
Microlmager NO’; . anisotropic features as small as 0.4 in [1 cm]. giving
(OBMI) ?:i? b';::;e high-resolution azimuthal information. The

mud sensitivity of the OBMI measurement delivers
computed dips that are highly accurate even in

formations with little resistivity contrast.




Table 3. Halliburton imaging tools summaries

Service
Company

Tools

Mud in
Borehole

Tools characteristics and capabilities

Halliburton

Electrical Micro
Imaging Service
(EMEY

Qil-Based
Micro-Imager
Tool (OMRI®™)

X-Tended Range
Micro Imager
Tool (XRMI™)

Conductive/
water based
mud

Non-
conductive/oil
based mud

Conductive/
water based
mud

Six independent. articulating arms. each outfitted
with 25 small electrodes on pad. Maintains
optimum pad contact with a minimum of pad
pressure. even in rugose, washed-out. or non-
circular bore holes. An electrical current flows
from the pads into the rock then upward in the
wellbore to return at the top of the tool.
Microresistivity contrast in the rock layers sampled
120 times per foot. Images are used to examine bed
thicknesses ranging from a fraction of an inch to
several feet; and accurately calculate sand
thickness counts. Image enhancement techniques
help further identify the precise characteristics of
the formation reservoir. Identifies individual fault
event and orientation. Detailed images of
sedimentary features allow descriptions of bed
boundaries, internal bed characteristics, textural
changes. and laminated sand/shale sequences.
Images can be presented in 2D and 3D formats.

Six resistivity measurements per pad. each with a
vertical resolution of 1 in. depth of investigation of
about 3 in, data of 120 samples per foot with a
proprietary signal acquisition scheme optimized for
rugose hole conditions. The pads are mounted on
six independent caliper arms. The sensor pads are
mounted on the caliper arms with unique two-axis
of articulation to improve pad contact in less ideal
hole conditions which shows widest possible range
of logging conditions. Used to analyze thin bed
pay. structural and stratigraphic dips. sedimentary
geometry and texture, borehole stresses. lithologic
unit thickness. permeability barriers, sand
attributes, clasts, vugs.

Coverage is 67% in 8.5 in. hole with 120
samples/ft. Good quality images even in high
Rt:Rm environments. Has 32 bit digital signal
acquisition architecture. S/N ratio by a factor of up
to five. and the dynamic range expanded by a
factor of up to three. The resulting images offer
good reliability even in highly resistive formations
(Rt > 2000 ohmm) or relatively salty borehole
fluids (Rm < 0.1 ohmm). Pads mounted on six
independently articulated arms help to maintain
pad contact in rugose. washed-out, elliptical. or
highly deviated boreholes.




Halliburton

Circumferential
Acoustic
Scanning Tool-
Visualization
(CAST-VTM)

All type of

muds

A high-frequency acoustic transducer to provide a
full hole 1mage. A second acoustic transducer is
mounted in the scanner housing to measure
characteristics of the borehole fluid. A directional
sub is provided to orient images. Run primarily in
open hole, 200 points horizontally by 40 samples/ft
vertically. It is designed to operate in conjunction
with other sonic tools but must be run centralized
in fluid filled boreholes. Provides structural.
stratigraphic, and sedimentological analyses for
optimized offset well placement. completion
design. and hydrocarbon depletion efficiency, thin
bed delineation and improved net pay estimations.
2D and 3D borehole geometry and breakout
presentations.




FMI

Fullbore Formation Microlmager Log.



Topics

- Applications

- Tool History

- Current Tool Theory

- Factors Affecting Log Results
- Log Quality

- Tool Setup & Operations

- Tool Maintenance



L
Applications

- Azimuthal Micro-Resistivities for dip, bed and fracture
analysis

- Dip calculation data is a major input in reservoir
modeling and interpretation

- Inclinometry for directional surveys.
- Borehole geometry from calipers.
- Hole volume




Tool History

- SHDT (Stratagraphic High-Resolution Dipmeter Tool)
- FMS/MEST (Fullbore Micro-Scanner)

- FMI/FBST (Fullbore Scanning Tool)

- OBDT (0il Based Dipmeter Tool)



B
Slim - FMS (MEST-B)

- MEST-B (Above) is the slimhole version of the FMS. Two
rows of 8 buttons on 4 pads.

- MEST-B 3 3/8" closing diameter.
- MEST-C 5" closing diameter.

- CTS telemetry.

- Bottom only



R - :
FMI

- 4 pads, 4 flippers
- DTS telemetry
- 57 closing diameter




R - :
PADS & FLIPPERS?

- Pads are connected to the calipers.

- Flippers are hinged to the pads, and
are not hydraulically controlled

- Pad pressure can be hydraulically
Increased.
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Resolution
- Samples: 62.5 Hz

- 5mm resolution (Button Size)

- Logging Speed must be less

than 1800 fph 000000000000
000000000000

5mm




D
FMI PADs Have Guts Too!

- Button signals are multiplexed at the
pads to reduce noise.

- Don’t hit them with hammers!




- Uphole power supply
- Phantommed on lines 1 and 4 to tool.

- Magnitude and Gain controlled either automatically
(changes with formation) or manually.



Passive Focusing

- As opposed to Active Focusing (Dual-Laterolog).
- Simple but has limited functionality.

- Current is emitted from buttons and pads, creating an

equipotential surface parallel to the borehole wall. The
current returns to the cartridge.



Passive Focusing
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Dips

- Dips show up as

sinusoidal features on an
FMI Image

- Colors represent different
micro-resistivities







Dips




Dip Calculation

| |
| o

0 =ATan ( h / Diam)
= Dip Angle

(— Circumference

(Known Diameter)
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Geographic Features




Tool Rotation

- Since the tool will rotate during the log, we must know
‘HOW™ it is rotating.

- If we don’t know the rotational position of the dipmeter
tool, then we will not know which direction the dip Is.



With Orientation




No Orientation
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Inclinometry

- “Where” the data came from is as important as the data
itself.

- Images can be oriented with respect to North or to the top of the
borehole.

- Compare it to taking a core or sample but not knowing
what depth it came from.

- For this reason, and inclinometry tool is required: GPIT



Inclinometry, GPIT

- The GPIT is located inside the
FMI sonde (FBSS).

- It can be removed and placed

Into its own housing. FBCC

AH-184

GPIC 0

FBSS




L
GPIT Block Diagram

- GPIC-AC : DTB e
. GPIC-C : FTB

clinometer housing

Triaxialinclnomeater

- Inclinometer assembly

Triaxial magnetometer

- General purpose in
clinometer cartridge

-

Electronic cartridge
assembly

————— ===

31-pin lower head



Magnetic Field Strength

- A Triaxial magnetometer (three single axis
magnetometers) are used to determine the rotational

position of the tool, relative to the Earth’s magnetic field.
(Magnetic North)

* Fyor = V(FZ + Fy2 + F2)
- Fyor = Depends on where you are.



Flux Gate Magnetometer
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Inclinometry, P1AZ

- Pad 1 Azimuth

Degrees from "North"

- Degrees from Magnetic north
on a horizontal plane.

- l.e.: P1AZ =180 means Pad 1
IS south.




L
Longitude / Latitude

- LATD: Latitude (in degrees)
- LOND: Longitude (in degrees)



L
Inclinometry, RB

- Relative Bearing

Degrees from "Up"

- Degrees from “UP” on a
vertical plane

- l.e. RB =180 means Pad 1 is
down.




Inclinometry, Deviated Well

- Relative Bearing
& P1AZ Track
each other

North

- In deviated wells, both can
be used to orient images Pad 1

RB
P1AZ

RB & P1AZ track each other




Inclinometry

- HAZI
- Direction the hole is travelling (N,S,E,W)

- DEVI

- Deviation of the hole (From Vertical)

- l.e.
Vertical well = 0 deg deviated
Horizontal well = 90 deg deviated



Worst Case

- In the event of the failure of one (and only one) of the
GPIT accelerometer in the Ax or Ay or magnetometer
channels, the job can still be rescued in a computing
center. If the accelerometer along the z-axis fails, speed
correction can no longer be performed.




L
Repeatabliltiy

- AZIM £ 2°
- DEVI £ 0.2°
- CALI £0.25in.
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- To visualize the image logs, two different types of color
normalization are done on the data; Static and Dynamic

normalization

- Static normalized images have the same color scaling
over the entire logged interval and thus show large-scale
resistivity variations related to lithology changes and
structural events (faults, fractures unconformities, etc...).
Dynamic normalized images are color scaled on a 2- ft-
sliding window, thus maximizing rock fabric detail (texture)

and bedding information.n.
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Figure 9. FMI log data from raw to static and dynamic normalized images, (Schlumberger)
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Figure 14. Bad hole image data due to tool stuck and release over the 3 meter interval. (Scale 1/20)
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Figure 15. Deformation of soft sediment leading to convolute bedding (slump), suggesting intense

structural deformation of the turbidity flow deposits. (Slump photo from GEOL342: Sedimentation and
Stratigraphy Spring 2013). (Image log scale 1/20)



1 Zones

Image Tadpoles
DEPTH ImageAnalysis CaseA (Schlumberger FMI - Geoframe Export (824 buttons)) CaseA (Tadoole)
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Figure 19. FMI image log with calcite cemented nodule. Image log shows that the nodule has not
been detected by all image tool pads as can also be seen in the core photo. Note the possible

bioturbation pattern in the bottom of the image log. (Core photo unit is 10cm and image log scale

1790
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Figure 20. FMI image log with three conductive fractures and one diffusive calcite cemented zone.
(Core photo unit is 10cm and image log scale 1/20)
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Figure 21. FMI image of 2.5m thick homogeneous sandstone layer without identifiable dip
angle/azimuth in the sand. Few resistive mixtures of tight shales and calcite cement are identified
at the top and bottom of the interval. (Every core column is 1.5m and image log scale is 1/20)




1 Zones Image Tadpoles
DEPTH 5 CaseA (Schlumberger FMI - Geoframe Export (8x24 buttons)) CaseA (Tadoole)
™) % N e Njo True, All 90
s
e
\ 3656
\
\
\
\
\
\ -
\
\
\
|
|
U
U
|
J
J
3657
e
6
/]
!
/
' -
!
38
!
1
'
7
Analog
bioturbation
outcrop
R

Figure 22. FMI image log of bioturbted zne th core photo of the zone. An analog outcrop of
bioturbation is shown below the figure. (Core scale is 1m and image log scale is 1/20)
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Internal sedimentary structures Bedding undersurface (sole) structures

Figure 3. Sedimentary structures observed on the high-resolution borehole image logs. (depth in
feet): 1,lamination ; 2,bedding: 3, inverse/reverse grading: 4, conglomerates; 5,massive bed: 6,
convolute bedding (slump); 7, sediment deformation : 8, water escape structure; 9, sand
injection: 10, cross-bedding: 11,groove cast: 12 load cast: 13, small-scale scour surface; 14,
erosional channel base with lag ;15 ,flame structure (Amer et. al., 2011).
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Faults on FMI log

- Offsets visible although
throw Is difficult to measure

- Dip changes may be visible
- Core to log




High resolution image logs allow identification of minor,
narrow- aperture fractures when calibrated against core




Loc| Characierization

- Acoustic & electrical imaging logs and their
Interpretative workstations are becoming the
subsurface standard for data acquisition, rapidly
replacing core.

- Dipole sonic logs are attempting to quantify fracture
occurrence and fracture porosity.




- Planar features are
expressed by ellipses on
borehole walls which are
expressed as sine waves

- Steepness of ellipses
reflect the dip magnitude
and orientation

- Apparent strike and dip
relate to amplitudes and
Inflections In sine waves

BOREHOLE 0 90 180 270 360
N E S w N

-

For straight hole:

*Dip magnitude is proportional to
amplitude of sine wave

*Dip azimuth is located at

TD: 531/ 27051 minimum of sine wave

w
David Spain (1998)
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Oil well in granite.

Open fractures are black

Green fracture is filled with
somewhat hard, resistive,
slightly erodible material.
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Fraciure Zone [cdeniification

Seismic attributes




Amplitude Map
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Lake Maravaibo,
Venezuela
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Sum of Absolute Amplitudes Over Normal Fault
Segments Linked by Relay Zone




OPEN FRACTURE

Stoneley wave generation at open fracture



& Image Logs -
% Image facies and depositional environment reconstruction
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UBI image of open
fractures

- Fractures make a
sinusoidal trace on the
borehole wall

- Data on type and
orientation

- Acoustic show open
fractures

- Resistivity show open
and cemented
fractures/faults




Ultrasonic
Borehole Imager

Direction of rotation

§
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3.543-in. 0D

Borehole

In-line
centralizer

Interchangeable
rotating sub
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UBI images Median radius| Amplitude image Radius image
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FMS Resistivity Image

UBI and FMS comparison

Conductive

UBI Amplitude Image

Resistive
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